• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 5, 583 (2020)
Tian XIE1、2, Xin-Hui YE1、2, Hui XIA2, Ju-Zhu LI2、3, Shuai-Jun ZHANG1、2, Xin-Yang JIANG2、4, Wei-Jie DENG2、4, Wen-Jing WANG2、3, Yu-Ying LI2, Wei-Wei LIU2, Xiang LI1、*, and Tian-Xin LI2、*
Author Affiliations
  • 1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 3Mathematics and Science College, Shanghai Normal University, Shanghai200234, China
  • 4School of Physical Science and Technology, Shanghai Tech University, Shanghai201210, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.05.008 Cite this Article
    Tian XIE, Xin-Hui YE, Hui XIA, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Xiang LI, Tian-Xin LI. Research progress of room temperature semiconductor infrared photodetectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 583 Copy Citation Text show less
    The dark current of MBE grown HgCdTe detector material is shown for an 18-μm pixel. Typical InSb dark current is also shown as a comparison[7]
    Fig. 1. The dark current of MBE grown HgCdTe detector material is shown for an 18-μm pixel. Typical InSb dark current is also shown as a comparison[7]
    The temperature dependence of the four dark current sources and their combination [13]
    Fig. 2. The temperature dependence of the four dark current sources and their combination [13]
    Temperature dependence of the dark current of InGaAs extended wavelength photodetector[23]
    Fig. 3. Temperature dependence of the dark current of InGaAs extended wavelength photodetector[23]
    Extended wavelength InGaAs detectors: Arrhenius plot of the dark current VS temperature for the 10×10 test array at a reverse bias of -100 mV[20]
    Fig. 4. Extended wavelength InGaAs detectors: Arrhenius plot of the dark current VS temperature for the 10×10 test array at a reverse bias of -100 mV[20]
    Modeled dark current components for SWIR HgCdTe/Si diode at 295 K[26]
    Fig. 5. Modeled dark current components for SWIR HgCdTe/Si diode at 295 K[26]
    Average pixel dark current (with cold shield) vs temperature for 2.5 μm cutoff HgCdTe/CdZnTe photodetector, comparison with Rule-07[30]
    Fig. 6. Average pixel dark current (with cold shield) vs temperature for 2.5 μm cutoff HgCdTe/CdZnTe photodetector, comparison with Rule-07[30]
    Dark current characteristics of MWIR InAs/InAsSb nBn detector: (a) Measured dark current density VS applied bias in the temperature range T=120~300 K as indicated. (b) The Arrhenius plot of dark current density VS inverse photodiode temperature measured at applied bias V=-0.1 V [41]
    Fig. 7. Dark current characteristics of MWIR InAs/InAsSb nBn detector: (a) Measured dark current density VS applied bias in the temperature range T=120~300 K as indicated. (b) The Arrhenius plot of dark current density VS inverse photodiode temperature measured at applied bias V=-0.1 V [41]
    Measured and modeled current density versus inverse temperature of HgCdTe/CdTe/GaAs [40]
    Fig. 8. Measured and modeled current density versus inverse temperature of HgCdTe/CdTe/GaAs [40]
    Schematic illustration of the InAs/GaSb T2SL interband cascade infrared photodetectors: (a) photocarrier dynamics, and (b) dark current dynamics in ICIPs[41]
    Fig. 9. Schematic illustration of the InAs/GaSb T2SL interband cascade infrared photodetectors: (a) photocarrier dynamics, and (b) dark current dynamics in ICIPs[41]
    p+/v/n+ HgCdTe LWIR PV detector: (a) Experimental values for Jmax versus temperature (b) Experimental values for Jmin versus temperature[52]
    Fig. 10. p+/v/n+ HgCdTe LWIR PV detector: (a) Experimental values for Jmax versus temperature (b) Experimental values for Jmin versus temperature[52]
    Arrhenius plot of R0A for InAs/GaSb T2SL ICIP devices from wafers in set #3 [53]
    Fig. 11. Arrhenius plot of R0A for InAs/GaSb T2SL ICIP devices from wafers in set #3 [53]
    GaAs/AlGaAs QCD: Detectivities of N1020, N1021, and N1022 as function of temperature. The dashed lines on top represent the background limited detectivity for a hemispherical FOV and a background temperature of 300 K[57]
    Fig. 12. GaAs/AlGaAs QCD: Detectivities of N1020, N1021, and N1022 as function of temperature. The dashed lines on top represent the background limited detectivity for a hemispherical FOV and a background temperature of 300 K[57]
    Saturation current density for IS(intersubband) and IB(interband) quantum cascade devices at room temperature[62]
    Fig. 13. Saturation current density for IS(intersubband) and IB(interband) quantum cascade devices at room temperature[62]
    Recent progress of the SITP(CAS) in near-and mid-wavelength infrared: (a) Dark current development of Near-IR InGaAs FPAs[17] (b) Measured R0A and D* for the one- (ICIP-1) and two-stage (ICIP-2) interband cascade photo detectors at a wide range of temperature. Also shown the Ea and dark current mechanisms[47]
    Fig. 14. Recent progress of the SITP(CAS) in near-and mid-wavelength infrared: (a) Dark current development of Near-IR InGaAs FPAs[17] (b) Measured R0A and D* for the one- (ICIP-1) and two-stage (ICIP-2) interband cascade photo detectors at a wide range of temperature. Also shown the Ea and dark current mechanisms[47]
    国家制造商年份

    面阵规模/中心距

    (μm)

    截止波长

    暗电流

    (偏压=-0.1V)

    其他性能指标
    USAAerius2009[10]1280×1024,10~1.67 μm0.5nA/cm2@280K量子效率=80%
    2011[11]640×512,25~1.6 μm1.5 nA/cm2@293K量子效率>70%
    Teledyne/ Judson2012[12]1280×1024,12.5~1.7 μm2 nA/cm2@298K
    Spectrolab2014[13]1280×1024,12.5~1.7 μm0.7nA/cm2@298K量子效率>80%
    FranceSofradir2012[14]640×512,15~1.7 μm7.5 nA/cm2@295K
    2015[15]640×512,15~1.7 μm5.5 nA/cm2@RT*
    IsraelSCD2016[16]1280×1024,10~1.7 μm0.5nA/cm2@280K量子效率>80%@1.55μm
    ChinaSITP, CAS2016[17]640×512,25~1.7 μm~5nA/cm2

    量子效率=90%@1.55μm

    探测率>2×1012cm·Hz1/2/W@RT*

    Table 1. InGaAs近红外探测器室温性能最新报道
    国家制造商年份面阵规模/中心距(μm)截止波长

    暗电流

    (偏压=-0.1V)

    其他性能指标
    USAUTC Aerospace Systems2016[20]320×256,12.5~2.5μm0.29mA/cm2@293K

    零偏电阻(R0A)=83.2Ω/cm2 @293K

    峰值量子效率=60%@1.7μm

    Teledyne/Judson2019[21]640× 512~2.6μm0.5mA/cm2@295K

    峰值响应率=1.20A/W

    峰值探测率=4.7×1010 cm·Hz1/2/W

    TurkeyMiddle East Technical University2014[22]640×512,20~2.65μm7.5mA/cm2@300K峰值探测率=2.5×1010cm·Hz1/2/W@300K
    ChinaSITP, CAS2017[23]512×256,30~2.55μm2.2mA/cm2@296K

    探测率>5×1011 cm·Hz1/2/W@200K

    峰值量子效率>80%

    Table 2. InGaAs延伸波长探测器室温性能最新报道
    国家制造商年份

    面阵规模/

    中心距

    (μm)

    材料截止波长暗电流(bias=-0.1V)其他性能指标
    USAEPIR2014[26]

    320×256,

    30

    HgCdTe/Si~2.65 μm~20mA/cm2@296K量子效率>70%
    2016[27]

    640×512,

    10

    HgCdTe/ CdTe/Si~2.59 μm~7mA/cm2@296K
    Teledyne/Judson2016[28]4096×4096HgCdTe/CdZnTe~2.45 μm0.0055e-@-0.25V,80K峰值量子效率>90%@1.5μm
    2018[29]

    320×256,

    30

    HgCdTe/CdZnTe

    ~2.5 μm

    ~2.9 μm

    27μA/cm2@296K*

    37μA/cm2@296K*

    峰值量子效率=85%
    FranceSofradir2012[30]

    384×288,

    15

    HgCdTe/CdZnTe~2.45 μm0.5mA/cm2@300K*
    Table 3. HgCdTe短波红外探测器室温性能的最新报道
    国家制造商/机构年份材料截止波长暗电流其他性能指标
    USAJ P Lab2016[36]InAsSb/InSb T2SL nBn~4.6 μm

    5μA/cm2@150K,-0.1V

    0.1A/cm2@250K

    量子效率=45%

    峰值探测率=8×109cm·Hz1/2/W@250K

    2018[37]InAsSb/InSb T2SL nBn~4.5 μm1A/cm2@290K,-0.1V

    峰值探测率=2.75×1010cm·Hz1/2/W

    @250K

    2018[38]InAs/InAsSb T2SL

    ~5.37 μm

    @150 K

    96μA/cm2@157K,-0.2V

    50 mA/cm2@222K

    量子效率=52%@4.5μm

    噪声等效温差=18.7mK@160K

    NWU2019[39]InAs/InAsSb T2SL nBn~4.5 μm2A/cm2@300K,-0.1V峰值响应率= 0.65A/W@1.9μm ,300K,
    NVESD2012[40]HgCdTe/CdTe/GaAs

    ~4.2 μm

    @150 K

    10mA/cm2@300K,-50mV
    Univ. Oklah.2012[41]InAs/GaSb T2SL ICIP

    ~4.7 um

    @300 K

    2.7μA/cm2@150K,-0.05V,

    28mA/cm2@300K,-0.05V

    探测率=2×109cm·Hz1/2/W@300K

    R0A=1.87Ω·cm2@300K

    FranceSofradir2015[42]InSb/InAlSb nBn~5.4 μm1nA/cm2@120K, -0.05V
    2016[43]HgCdTe/CdZnTe~4.2 μm30mA/cm2@295K,-0.1V
    IsrealSCD2019[44]XBn-InAsSb~4.2 μm0.7μA/cm2@150K,-0.1V
    PolandMUT2014[45]HgCdTe p+B-p-n-N+

    ~3.6 um

    @300 K

    0.15mA/cm2@230K

    8mA/cm2@290K,-0.1V

    峰值响应率=2 A/W
    ChinaInst. of Semi, CAS2017[46]InAs/GaSb T2SL~4.8 μm

    0.08mA/cm2@140K,-0.1V

    8A/cm2@300K,-0.1V

    SITP, CAS2016[47]InAs/GaSb T2SL ICIP~4.8 μm

    探测率=1.23 × 109 cm·Hz1/2/W

    @300K

    量子效率=19.8%@300K

    R0A=0.06Ω·cm2@300K

    2019[48]InAs/GaSb T2SL ICIP~5.3 μm

    0.3mA/cm2@148K,-0.1V

    3.97A/cm2@304K,-0.1V

    峰值响应率=1.2A/W@4.3μm ,146K
    Table 4. 中波红外探测器近室温性能的最新报道
    国家制造商/机构年份材料/器件结构截止波长暗电流/R0A其他性能指标
    USAEPIR2010[52]HgCdTe

    ~10.4 μm@100 K

    ~7.4 μm@250 K

    ~5A/cm2

    @300K, -0.1V

    Univ. Oklah.2016[53]InAs/GaSb T2SL ICIP~8 μm@300 K

    ~0.8Ω·cm2@200K*,

    ~0.0082Ω·cm2

    @300K*

    探测率=1×108 cm·Hz1/2/W

    @300K

    PolandMUT2018[54]InAs/InAsSb T2SL

    ~9.8 μm@210 K

    ~10.4μm@230 K

    探测率=2×1010 cm·Hz1/2/W

    @210K

    2016[55]HgCdTe barrier~9μm@230K~10A@230K, -0.1V探测率=2×109 cm·Hz1/2/W @230K
    2019[56]HgCdTe~9μm@300K

    探测率>2×108 cm·Hz1/2/W

    @300K

    SwissUniv. Neuch.2009[57]GaAs/AlGaAs QCD

    Peak wavelength

    @7.5μm and

    @10μm

    探测率=1×107cm·Hz1/2/W

    @300K,7.5μm and

    1×107cm·Hz1/2/W@300K,10μm

    AustriaVienna Univ. Tech2014[58]

    InGaAs/

    InAlAs QCD

    Peak wavelength

    @8μm

    峰值响应率=16.9mA/W

    @8μm,300K

    Table 5. 长波红外探测器近室温性能最新报道
    Tian XIE, Xin-Hui YE, Hui XIA, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Xiang LI, Tian-Xin LI. Research progress of room temperature semiconductor infrared photodetectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 583
    Download Citation