• Photonics Research
  • Vol. 12, Issue 4, 682 (2024)
Wanxin Shi1、2、†, Xi Jiang3、†, Zheng Huang1, Xue Li3, Yuyang Han1, Sigang Yang1, Haizheng Zhong3, and Hongwei Chen1、*
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2China Mobile Research Institute, Beijing 100053, China
  • 3MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, School of Materials Sciences & Engineering, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1364/PRJ.515349 Cite this Article Set citation alerts
    Wanxin Shi, Xi Jiang, Zheng Huang, Xue Li, Yuyang Han, Sigang Yang, Haizheng Zhong, Hongwei Chen. Lensless opto-electronic neural network with quantum dot nonlinear activation[J]. Photonics Research, 2024, 12(4): 682 Copy Citation Text show less
    References

    [1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [2] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [3] A. Sinha, J. Lee, S. Li. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [4] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab. Deep learning algorithm for autonomous driving using googlenet. IEEE Intelligent Vehicles Symposium (IV), 89-96(2017).

    [5] T. Young, D. Hazarika, S. Poria. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag., 13, 55-75(2018).

    [6] Q. Shi, Z. Zhang, T. He. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun., 11, 4609(2020).

    [7] H. Y. Xiong, B. Alipanahi, L. J. Lee. The human splicing code reveals new insights into the genetic determinants of disease. Science, 347, 1254806(2015).

    [8] M. Helmstaedter, K. L. Briggman, S. C. Turaga. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500, 168-174(2013).

    [9] G. Wetzstein, A. Ozcan, S. Gigan. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [10] J. Li, D. Mengu, Y. Luo. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics, 1, 046001(2019).

    [11] M. S. S. Rahman, J. Li, D. Mengu. Ensemble learning of diffractive optical networks. Light Sci. Appl., 10, 14(2021).

    [12] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [13] X. Xu, M. Tan, B. Corcoran. 11 tops photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [14] J. Chang, V. Sitzmann, X. Dun. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).

    [15] T. Zhou, X. Lin, J. Wu. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [16] M. Miscuglio, Z. Hu, S. Li. Massively parallel amplitude-only fourier neural network. Optica, 7, 1812-1819(2020).

    [17] M. M. P. Fard, I. A. Williamson, M. Edwards. Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express, 28, 12138-12148(2020).

    [18] M. S. Nezami, T. F. de Lima, M. Mitchell. Packaging and interconnect considerations in neuromorphic photonic accelerators. IEEE J. Sel. Top. Quantum. Electron., 29, 6100311(2022).

    [19] J. Feldmann, N. Youngblood, C. D. Wright. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [20] M. A. Nahmias, B. J. Shastri, A. N. Tait. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum. Electron., 19, 1800212(2013).

    [21] C. Teng, J. Zou, X. Tang. MOS2 as nonlinear optical material for optical neural networks. IEEE J. Sel. Top. Quantum. Electron., 29, 5101007(2023).

    [22] G. H. Li, R. Sekine, R. Nehra. All-optical ultrafast relu function for energy-efficient nanophotonic deep learning. Nanophotonics, 12, 847-855(2022).

    [23] Q. Guo, R. Sekine, L. Ledezma. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics, 16, 625-631(2022).

    [24] H. Li, B. Wu, W. Tong. All-optical nonlinear activation function based on germanium silicon hybrid asymmetric coupler. IEEE J. Sel. Top. Quantum. Electron., 29, 8300106(2022).

    [25] G.-K. Lim, Z.-L. Chen, J. Clark. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics, 5, 554-560(2011).

    [26] A. Ryou, J. Whitehead, M. Zhelyeznyakov. Free-space optical neural network based on thermal atomic nonlinearity. Photonics Res., 9, B128-B134(2021).

    [27] Y. Zuo, B. Li, Y. Zhao. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [28] D. Owen-Newns, J. Robertson, M. Hejda. Ghz rate neuromorphic photonic spiking neural network with a single vertical-cavity surface-emitting laser (VCSEL). IEEE J. Sel. Top. Quantum. Electron., 29, 1500110(2022).

    [29] A. Dejonckheere, F. Duport, A. Smerieri. All-optical reservoir computer based on saturation of absorption. Opt. Express, 22, 10868-10881(2014).

    [30] M. Miscuglio, A. Mehrabian, Z. Hu. All-optical nonlinear activation function for photonic neural networks. Opt. Mater. Express, 8, 3851-3863(2018).

    [31] T. Wang, M. M. Sohoni, L. G. Wright. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics, 17, 408-415(2023).

    [32] R. Zhang, J. Fan, X. Zhang. Nonlinear optical response of organic–inorganic halide perovskites. ACS Photonics, 3, 371-377(2016).

    [33] W. Chen, S. Bhaumik, S. A. Veldhuis. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun, 8, 15198(2017).

    [34] X.-K. Liu, W. Xu, S. Bai. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2021).

    [35] W. Shi, Z. Huang, H. Huang. Loen: lensless opto-electronic neural network empowered machine vision. Light Sci. Appl., 11, 121(2022).

    [36] D. Li, E. Kou, W. Li. Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDS/PVA film. Chem. Eng. J., 425, 131653(2021).

    [37] F. P. García de Arquer, D. V. Talapin, V. I. Klimov. Semiconductor quantum dots: technological progress and future challenges. Science, 373, eaaz8541(2021).

    [38] L. N. Quan, F. P. García de Arquer, R. P. Sabatini. Perovskites for light emission. Adv. Mater., 30, 1801996(2018).

    [39] S. Colburn, Y. Chu, E. Shilzerman. Optical frontend for a convolutional neural network. Appl. Opt., 58, 3179-3186(2019).

    [40] L. Huang, Q. A. Tanguy, J. E. Fröch. Photonic advantage of optical encoders. Nanophotonics(2023).

    Wanxin Shi, Xi Jiang, Zheng Huang, Xue Li, Yuyang Han, Sigang Yang, Haizheng Zhong, Hongwei Chen. Lensless opto-electronic neural network with quantum dot nonlinear activation[J]. Photonics Research, 2024, 12(4): 682
    Download Citation