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With the swift advancement of neural networks and their expanding applications in many fields, optical neural
networks have gradually become a feasible alternative to electrical neural networks due to their parallelism, high
speed, low latency, and power consumption. Nonetheless, optical nonlinearity is hard to realize in free-space
optics, which restricts the potential of the architecture. To harness the benefits of optical parallelism while ensur-
ing compatibility with natural light scenes, it becomes essential to implement two-dimensional spatial nonlin-
earity within an incoherent light environment. Here, we demonstrate a lensless opto-electrical neural network that
incorporates optical nonlinearity, capable of performing convolution calculations and achieving nonlinear acti-
vation via a quantum dot film, all without an external power supply. Through simulation and experiments, the
proposed nonlinear system can enhance the accuracy of image classification tasks, yielding a maximum improve-
ment of 5.88% over linear models. The scheme shows a facile implementation of passive incoherent two-
dimensional nonlinearities, paving the way for the applications of multilayer incoherent optical neural networks
in the future. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.515349

1. INTRODUCTION

Over the past decade, deep learning anchored in neural net-
works [1] has ushered in transformative changes across a myriad
of fields, including computational imaging [2,3], autonomous
driving [4], natural language processing [5], and numerous
other intelligent applications [6–8]. However, the escalating de-
mand for even faster and more energy-efficient systems has im-
posed constraints on the further development of electrical
neural networks. In response to this challenge, researchers have
turned to the realm of optical neural networks (ONNs) [9–13],
harnessing their exceptional computing speed, massive parallel-
ism, and low latency as promising alternative solutions.
Considering compatibility with existing machine vision sys-
tems, such as the applications in practical natural scenarios, the
emergence of hybrid opto-electric neural networks (OENNs)
[14–16] also offers a potential avenue.

In most ONNs and OENNs, optics only completes linear
operations, while the nonlinear activation is implemented elec-
tronically. This creates a significant barrier to implementing

spatial nonlinear activation functions—a small but essential
component of ONNs. Recently, some all-optical multilayer
neural network schemes have been proposed to increase the
accuracy of tasks. Ideally, when there is no nonlinearity between
network layers, multilayer operations could be equivalent to
single-layer matrix calculations. Correspondingly, experimental
data indicates that an all-optical multilayer neural network,
which lacks optical nonlinearity between layers, exhibits limited
enhancements in task accuracy. Thus, its applicability in other
visual task scenarios is also limited.

In the pursuit of advancing optical neural networks, research-
ers have been exploring methods to achieve optical nonlinear
activation functions with modulations. Previous research has
demonstrated various approaches to realizing such nonlinear-
ities, including the utilization of electro-optic modulators such
as Mach–Zehnder interferometers (MZIs) or microrings
[17,18]. Moreover, some strategies have been proposed to
achieve optical nonlinear activation functions in all-optical neu-
ral networks with the aim of mitigating energy loss during pho-
toelectric conversion. Among them, optical nonlinearity can be
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categorized into one-dimensional (1D) and two-dimensional
(2D) spatial nonlinearity. The 1D nonlinearities refer to the
realization of optical single-point nonlinear activation through
specific materials or systems. At present, phase change materials
(PCMs) [19] and saturable absorbers (SAs) [20,21] are com-
monly used to realize nonlinearity. PCMs exhibit two states—
amorphous and crystalline—with high transmittance in the
amorphous state and low transmittance in the crystalline state.
In spiking neurosynaptic networks, when the input light inten-
sity surpasses a certain threshold, PCMs change state and gen-
erate output pulses, effectively emulating the behavior of the
ReLU function. Similarly, SAs are often integrated into lasers
to facilitate nonlinear modulation. As the light intensity in-
creases, the SA progressively reaches a saturated state, eventually
transmitting light completely. Likewise, other materials such as
periodically poled thin-film lithium niobate nanophotonic
waveguides [22,23] and germanium silicon hybrid asymmetric
couplers [24], can also implement optical point-to-point non-
linear activation. These aforementioned methods generally ne-
cessitate a coherent light source, which makes them difficult to
use in natural scenes.

Similar to 1D nonlinearity, each point in two-dimensional
space has the same nonlinear modulation function in 2D
nonlinearity. Two-dimensional graphene [25] materials have
garnered considerable attention as a potential means of achiev-
ing optical nonlinearity. Graphene exhibits unique characteris-
tics, such as low threshold, easy excitation, and strong nonlinear
effects. When the light intensity exceeds the threshold, the
transmittance varies with the input power, representing a non-
linear process. Besides, Ryou et al. [26] presented a free-space
optical artificial neural network (ANN) with nonlinear activa-
tion facilitated by the saturable absorption of thermal atoms.
Another noteworthy work by Zuo et al. [27] illustrated an
all-optical neural network in which linear calculations are pro-
grammed by SLM and Fourier lenses, while nonlinear
optical activation is realized by laser-cooled atoms based on
electromagnetically induced transparency. In addition, vertical-
cavity surface-emitting lasers (VCSELs) have been explored as
nonlinear elements in photonic reservoir computing imple-
mentations [28]. With a single VCSEL neuron, a spiking neu-
ral network is built, which has a turn-on threshold to output
pulses. Different from the methods above that were based on a
coherent laser source to achieve nonlinear modulation, re-
searchers have demonstrated the feasibility of using a semicon-
ductor saturable absorber mirror (SESAM) to realize 2D spatial
nonlinear modulation under an incoherent light source [29].
Nevertheless, this system requires complex devices such as a
superluminescent diode (SLED), optical fibers, erbium doped
fiber amplifiers (EDFAs), and Mach–Zehnder interferometers
(MZIs) to ensure stable nonlinearity. In contrast, quantum dots
(QDs) have proven to be an effective alternative for incoherent
nonlinear implementations in recent years. Miscuglio et al. [30]
set up a silicon photonic waveguide system with QD em-
bedded, while the nonlinear modulation range is a function of
input power density. Although the approach was still based on
coherent light, it has experimentally substantiated the capabil-
ity of quantum dots in achieving optical nonlinear mappings.
Furthermore, Wang et al. [31] have proposed a multilayer

nonlinear neural network based on a commercial image
intensifier tube for image sensing. When light irradiates the
photocathode of the image intensifier, it is converted into pho-
toelectrons. These electrons undergo high-rate multiplication
through the action of an electric field and are subsequently con-
verted back into photons through a fluorescent quantum dot
screen. Although this system can operate in natural light con-
ditions, it necessitates using an image intensifier, along with a
power supplement.

In recent years, significant progress has been made in devel-
oping optical domain nonlinear methods. However, it is evi-
dent that fulfilling the requirements of passive low energy
consumption, natural light operation, spatial two-dimensional
nonlinearity, and a simple, miniaturized system concurrently
remains a formidable challenge. In this paper, we demonstrate
a lensless opto-electronic neural network with quantum dot
(QD) nonlinear activation for visual tasks in natural scenes.
Remarkably, the system does not need an additional power sup-
ply, while the convolution and nonlinear activation operations
are realized only by an optical mask and QD film. This ap-
proach not only simplifies the system’s architecture but also en-
hances its compactness and energy efficiency. The introduction
of optical nonlinearity into our opto-electronic neural network
plays a role in improving the accuracy of the corresponding
visual tasks.

2. NONLINEAR OPTICAL ACTIVATION
FUNCTION

Quantum dots are semiconductor nanocrystals, typically meas-
uring between 2 and 10 nm in size. During the photolumines-
cence process of quantum dots, external photons excite the
electrons in the quantum dots. The electrons can directly jump
to the valence band and then recombine with holes to emit
light. Alternatively, electrons might first form excitons by com-
bining with holes and then transition to the ground state, re-
sulting in radiative luminescence. During this process, defects,
impurities, and lattice thermal vibrations will increase nonra-
diative recombination and reduce luminous efficiency.

The nonlinear optical properties of perovskite materials are
generally reflected in phenomena such as saturation absorption
and two-photon (multi-photon) absorption [32,33]. They have
a variety of forms, including single crystals, polycrystalline
films, quantum dots, etc. This article proposes a nonlinear op-
tical system based on perovskite quantum dots, in which the
relationship between excitation power and quantum dot lumi-
nescence intensity is similar to the ReLU function. When the
excitation power surpasses a certain value, the detector begins to
respond to the luminous intensity of the material. After that, as
the excitation power increases, the quantum dot photolumines-
cent light intensity increases correspondingly.

The excitons formed after material excitation have exciton
binding energies close to room temperature thermal energy, and
they are easily dissociated into free carriers. Since the electron–
hole recombination rate of perovskite is slow, the excited car-
riers may first be captured by nonradiative recombination cen-
ters. Meanwhile, as the excitation power increases, the carrier
density is higher, and radiative recombination becomes dom-
inant. In carrier recombination dynamics, the quantum
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efficiency gradually increases to saturation as the excitation light
intensity increases, and the increase process may correspond to
a change in excitation intensity of 2–3 orders of magnitude
[34]. Limited by the luminous intensity of the material and
the sensitivity of the photodetectors, the detectors cannot re-
spond to luminescence when the excitation power is low.
The above reasons may jointly lead to the nonlinear process
of quantum dot luminescence.

3. MEASUREMENT OF NONLINEAR
ACTIVATION CURVE

The quantum dots material we use in the experiment is
�C9NH20�7�ZnCl2�2�Pb3Cl11�9, which comprises metal halide

quantum dots with a perovskite zero-dimensional structure, and
its crystal structure is similar to perovskite (hereafter referred to
as perovskite quantum dots).

The quantum dot luminescence spectrum is shown in
Fig. 1. In order to distinguish the excitation light and emitted
light, the wavelength of excitation light is set as 365 nm.
Meanwhile, in the experiment, the center wavelength of exci-
tation light is 405 nm, and the perovskite quantum dots emit
green light with a center wavelength of 512 nm.

In the experiment, we use an LED array with 405 nm center
wavelength to measure the nonlinear curve and project images
of visual tasks. The pixel size of the array is 32 × 32, and the
luminous intensity of each source point on the LED array is
adjustable. First, light up a single source point on the LED ar-
ray. The quantum dots absorb the purple light emitted by the
source point, and green fluorescence is excited. The purple light
intensity captured by the sensor is used as the excitation light
intensity (input light intensity of the curve), while the mea-
sured green fluorescent light intensity is used as the luminous
intensity (output light intensity of the curve). The fitting func-
tion relationship between the input and output light intensity is
the activation curve of the quantum dot thin film.

The activation curves of the quantum dots are shown in
Fig. 2, formulated with component molar ratio of PbCl2,
C9H20ClN, ZnCl2 at 1:9:2 and 1:9:0.5, respectively. As we
can see in Fig. 2, the fitting function relationship of the quan-
tum dots is nonlinear, which is consistent with the principle
discussed above. At lower input light intensities, the quantum
dots remain virtually nonluminescent on a macroscopic scale.
However, once the input light intensity crosses a specific
threshold, the excitation light intensity of the quantum dots
demonstrates an approximately linear relationship with the in-
put light intensity.

4. JOINT OPTIMZATION OF THE OPTO-
ELECTRONIC NEURAL NETWORK WITH
QUANTUM DOT NONLINEARITY

In electrical neural networks, nonlinear activation functions can
make the network more powerful. Beyond accelerating conver-
gence and improving task accuracy, they augment the network’s
capacity to learn intricate data and represent sophisticated
nonlinear mappings between inputs and outputs. As such,

Fig. 1. Photoluminescence of �C9NH20�7�ZnCl2�2�Pb3Cl11�9
QD film. (a) Photoluminescence emission spectra. 1:9:2 and
1:9:0.5 are the molar ratios of perovskite quantum dot components.
(b), (c) Comparison of 1:9:2 (b) and 1:9:0.5 (c) quantum dot films
under sunlight and UV light irradiation.

Fig. 2. Fitting nonlinear curves of quantum dots with different component molar ratios. (a) 1:9:2. (b) 1:9:0.5.
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nonlinear activation functions play a crucial and indispensable
role in neural networks.

The opto-electronic neural network architecture based on
quantum dot nonlinearity is shown in Fig. 3. In our previous
research, we introduced the concept of the feature size Δ, de-
fining it as the spatial size of a single pixel on the optical mask
[35]. It has been verified that when the size of the light source,
the feature size, and the distance between the light source,
mask, and detector satisfy a certain relationship, the convolu-
tion operation can be completed in the optical domain. At this
time, the image captured by the sensor is the feature map after
the convolution calculation. When the quantum dot film is
close to the optical mask in the above linear system, the con-
volution result of the light source and the mask will be trans-
formed nonlinearly through the quantum dot film.
Consequently, the light intensity distribution captured by
the sensor is the convolution result following nonlinear activa-
tion mapping.

The joint optimization process of the whole system link is
shown in Fig. 4. The entire link consists of four components:
the optical mask, which completes the convolution calculation,
the quantum dots utilized for nonlinear activation, the sensor

capturing the feature map following convolution and nonlinear
calculation, and a digital processor executing subsequent elec-
trical network operations. In pursuit of maximizing the overall
network classification accuracy, the whole link is optimized in
an end-to-end fashion. The nonlinear activation curve is used
to be a fixed nonlinear activation module between the optical
convolution part and the electrical neural network (suffix net-
work). Subsequently, the loss function is calculated based on
the captured nonlinearly activated feature map. All network
parameters, except the nonlinear layer parameters, are simulta-
neously optimized through the loss function in the joint opti-
mization process. Finally, the optical convolution kernel
pattern is obtained.

5. LENSLESS OPTO-ELECTRONIC NEURAL
NETWORK WITH NONLINEARITY FOR
APPLICATION

A. Machine Learning Visual Tasks
In this section, we numerically characterized the performance
of the quantum dot nonlinearity on the visual tasks. We first
chose the classification of the hand-drawn images. To this end,

Fig. 3. Prototype for the lensless opto-electrical neural network system with optical nonlinearity. (a) Optical path diagram of the system.
(b) Corresponding network structure diagram of the system.
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we opted for 10 classes from the QuickDraw image dataset. As
illustrated in Fig. 5(b), the input image, sized at 28 × 28 pixels,
was projected onto an LED array positioned before the optical
mask. After the optical convolution calculation, the results were
nonlinearly activated by quantum dot film, and the nonlinear
feature map was captured by the sensor. The pixel size of the
input for the electrical network was 26 × 26, while the electrical
network was a fully convolutional architecture. The network
contained three 5 × 5 convolution layers, one 1 × 1 convolution
layer, and a maximum pooling layer, and the output of the
network is 10 units, aligning with the 10 selected classes for
classification.

In addition to the hand-drawn image classification, we also
conducted experiments for two other visual tasks: hand sign
and traffic sign classification, as depicted in Fig. 5. Unlike
the previous task, these images are grayscale representations
captured from actual scenes, making their classification more
challenging. As for the hand sign classification task in Fig. 5(a),
the pixel size of the images was reshaped to 28 × 28. The first
3 × 3 convolution layer and nonlinear activation were operated
on the light field, while the suffix electrical network consisted of
676 input vectors and a linear activation for the output of 4
units. Meanwhile, for the traffic sign classification task in
Fig. 5(c), the input images were resized to 20 × 20. After
passing through the optical convolution layer and the quantum
dot nonlinear activation layer, the input size of the electrical
network was 18 × 18. The architecture included three 5 × 5
convolution layers and a maximum pooling layer, and finally
output 10 classification results through a 1 × 1 convolu-
tion layer.

B. Nonlinear Activation Opto-Electrical Neural
Network Experiment
As shown in the system prototype in Fig. 3, the images were
displayed on the LED array, situated 10–20 cm from the op-
tical mask. The QD film was positioned close to the mask,
maintaining a minute separation of approximately 1 mm.

The sensor was also positioned about 1 mm from the QD film.
Inspired by our previous work, the image signal processing
(ISP) process includes many links such as demosaic, white bal-
ance, color correction, and tone mapping. However, only a few
parameters can be adjusted in the process, and these processes
are primarily optimized for human perception rather than task-
oriented optimization. So it can be concluded that the ISP pro-
cess of the sensor is not necessary for the whole pipeline.
Therefore, we directly collected raw data without any demosaic
processing, using the G channel of the raw data for subsequent
analysis. A few images were rendered for human comprehen-
sion, as depicted in Fig. 6(a). We qualitatively compared the
rendered images before and after adding nonlinearity from
raw data. It can be seen in Fig. 6(b), when adding QD optical
nonlinearity, the relative intensity of the original high light in-
tensity part in the image does not change much, while the gray
value of the original low intensity part decreases significantly.
The phenomenon above is consistent with the measured
nonlinear curve of QD in Fig. 2. As for quantitative compari-
son in Fig. 6(b), although the overall trend remained consis-
tent, there existed a certain discrepancy between the image
produced by directly adding the measured nonlinearity and
the image obtained from the nonlinear system. For example,
the “Nonlinear_exp” images measured have higher peak widths
than the “Nonlinear_sim” images, and the trough values do not
drop to 0. This discrepancy can be attributed to the noise of the
imaging sensor, the blur caused by the quantum dot scattering
process, system correction error, and minute variations in non-
linearity across different positions.

The image classification results of the opto-electrical neural
network with nonlinear activation are presented in Fig. 7.
Throughout the simulation of three visual tasks, the incorpo-
ration of the quantum dot nonlinear layer led to an average
increase in classification accuracy by 4.43%. Both the linear
and nonlinear networks utilized a joint optimization strategy
to enhance task accuracy. In our previous work [35], we dem-
onstrated LOEN architecture, which can complete optical

Fig. 4. Joint optimization process based on quantum dot nonlinearity.
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convolution and some image classification tasks. Compara-
tively, the classification accuracy achieved in the single-kernel
optical convolution experiment was slightly lower than the
simulation, with an average difference of 2%. Therefore, the
linear system experiment was not repeated in this paper, and

we directly referred to the simulation data and the conclusion
of the accuracy difference between the simulation and experi-
ment in LOEN [35].

In the subsequent phase, we utilized the optical mask opti-
mized by the entire neural network to construct the system and

Fig. 6. Captured images. (a) Captured images of three visual tasks, which were rendered from raw data. (b) Comparison of images between linear
and nonlinear systems. “Linear_exp” refers to the images captured in the linear system experiment, “Nonliear_sim” refers to the result of adding the
measured QD nonlinearity to the images captured in the linear system experiment, and “Nonlinear_exp” refers to the images captured in the
nonlinear system experiment. The red box in the figure is the enlarged part; the enlarged image is in the bottom-right corner. The “comparison”
figures on the right side represent the comparisons of pixel values at the yellow line position of the corresponding three images.

Fig. 5. Visual tasks and the corresponding networks used in the experiment. Among them, the left side of (a)–(c) is part of the visual task dataset,
the middle is the optical mask pattern optimized for the corresponding task, and the right side is the neural network architecture of the corresponding
visual task. (a) Hand sign classification. (b) Hand drawn image classification. (c) Traffic sign classification.

Research Article Vol. 12, No. 4 / April 2024 / Photonics Research 687



conduct the nonlinear experiments. The results of the experi-
ment are shown in Fig. 7. The classification accuracy of hand
sign, hand drawn images, and traffic sign tasks can reach
86.6%, 78.6%, and 84.74%, respectively, representing im-
provements of 2.16%, 3.75%, and 5.88% over the correspond-
ing linear system simulation accuracy. If the gap between linear
system simulation and experiment is taken into consideration,
the accuracy improvement of the nonlinear system will be
higher.

The confusion matrices corresponding to the task classifica-
tion results are shown in Fig. 7(b). It can be seen from the re-
sults that the addition of the QD nonlinear layer effectively
improves the classification accuracy of each category. The aver-
age accuracy difference between the nonlinear experiments and
simulations for the three visual tasks was measured at 1.46%,
similar to the average difference observed between the linear
system simulations and experiments. Several factors may con-
tribute to this discrepancy. First, the inhomogeneity of the
quantum dot film can yield disparities in the nonlinear activa-
tion functions of neurons at different positions within the net-
work. Second, the quantum dot scattering process is relatively
complex, potentially leading to a certain degree of blurring ef-
fect on the results of optical convolution, thereby influencing
the accuracy of visual tasks.

6. DISCUSSION

In this study, we demonstrated a novel nonlinear opto-electrical
neural network capable of efficiently handling various visual
tasks. Unlike traditional approaches that rely solely on electrical
processors for nonlinear activation, our architecture utilized the
quantum dot film to achieve nonlinear activation directly on

the feature map. Meanwhile, the convolution operation is ef-
ficiently performed by the optical mask. Compared to the other
optical neural networks with optical nonlinearity, the method
allows us to achieve passive spatial nonlinear activation, elimi-
nating the need for additional electrical calculations and main-
taining a lensless system. As a result, the overall size and energy
consumption of the system are significantly reduced.

Similar to our previous work, the entire pipeline is simplified
without imaging and activation, and the whole architecture, in-
cluding the optical and electrical parts, is task-oriented jointly
optimized. The joint optimization strategy enhances the overall
performance of the opto-electronic neural network, making it
more effective in real-world applications. When considering
the entire pipeline, it is essential to evaluate the energy demands
not only of the subsequent electrical neural network computa-
tions but also of the sensor detection phase. This latter segment is
predominantly governed by the energy costs of photosensitive
detection and the ISP. The two parts have comparable energy
cost. Due to the whole pipeline being optimized facing the task
accuracy, the ISP process was removed from the experiments,
which resulted in a nearly 50% reduction in energy consumption
in the sensor detection part.

The exploration in this paper is focused on a specific type of
perovskite quantum dot as a nonlinear material. Compared
with other optical nonlinear implementation methods, the
main advantages of this method are that no additional power
supply is required, the system is simple and miniaturized, and
the light source is incoherent light, making it suitable for use in
low-power edge devices. Future investigations should diversify
by evaluating the nonlinear characteristics of other materials to
enhance the accuracy of various machine vision tasks. On the
other hand, it is necessary to improve the luminous conversion
efficiency of quantum dots as much as possible to reduce energy
loss and optimize the overall energy efficiency of the opto-elec-
trical neural network. As for the multilayer nonlinearity cas-
cade, it can be realized in the following ways in the future:
adding other quantum dot materials [36], adjusting the size
of the quantum dot material to change the band gap to further
expand the photoluminescence wavelength range [37], and
changing the composition ratio of the same quantum dot com-
ponents to adjust the photoluminescence properties [38]. It is
worth noting that because the light intensity is attenuated dur-
ing transmission and there is no power supply in the system
architecture, the system cannot complete light regeneration
or light amplification between layers. The above factors will
limit the number of cascadable quantum dot nonlinear layers.

The opto-electrical neural network with only one optical
convolution layer and one passive optical nonlinear activation
layer was demonstrated. Similar to other optical neural net-
works [39,40], only a single nonlinear layer has limited im-
provement in the accuracy of visual tasks. However, optical
nonlinearity provides ideas and methods for all-optical multi-
layer neural networks. Efficient all-optical multilayer neural
networks are more promising when combined with optical
nonlinearity. Apart from the quantum dot films used in the
experiment, as long as the device has an optical-to-electrical-to-
optical (OEO) or optical-to-optical (O-O) conversion func-
tion, it can be used to complete nonlinear modulation and

Fig. 7. Results for optical nonlinear system. (a) Experimental rec-
ognition accuracy of hand sign, hand drawn image, and traffic sign
classification tasks. (b) Confusion matrices of the three visual tasks
based on experimental raw data. The abscissa is “predicted labels,”
and the ordinate is “true labels.”
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cascade the next layer of the optical network. Considering the
attenuation during light transmission, a power supply can be
added to achieve light amplification or light regeneration.
The power supply can further increase the number of layers
of the nonlinear optical neural networks and help them be ap-
plied to various complex visual scenes. By expanding the optical
nonlinear model, it becomes possible to propose a multilayer
opto-electronic neural network with nonlinear activation, pav-
ing the way for the realization of an all-optical neural network
with interlayer nonlinearity. In the future, we would focus on
developing efficient multilayer optical neural networks, lever-
aging the power of optical nonlinearity to perform complex
computations without relying on traditional electrical compo-
nents. The all-optical neural network can complete specific
tasks under natural incoherent light. There is theoretically
no power consumption in the architecture, while the system
size and weight can be minimized. The architecture is highly
attractive for applications in autonomous driving, smart homes,
and other real-world scenarios. With reduced energy consump-
tion and compact design, the all-optical neural network can
revolutionize various industries, offering a wide range of appli-
cation scenarios and contributing to developing more energy-
efficient and powerful artificial intelligence systems.

7. MATERIALS AND METHODS

A. Preparation of Quantum Dot Film
The �C9NH20�7�ZnCl2�2�Pb3Cl11�9 quantum dot films were
fabricated following the in situ formation process. The fabrica-
tion of �C9NH20�7�ZnCl2�2�Pb3Cl11�9∕PVDF was as follows.
A precursor solution was prepared by mixing 0.25 mmol PbCl2
(lead chloride, 99.99%, Meryer Shanghai), 2.25 mmol
C9H20ClN (1-butyl-1-methylpyrrolidine chloride, 99%,
Meryer Shanghai), 0.5 mmol or 0.125 mmol ZnCl2 (zinc chlo-
ride, 99.95%, Meryer Shanghai), and 0.5 g PVDF [250,000
(molecular mass), Meryer Shanghai] powder in 4.5 mL
DMSO. The mixtures were stirred for 4 h at 70°C until com-
pletely dissolved, and the �C9NH20�7�ZnCl2�2�Pb3Cl11�9 pre-
cursor solution was obtained. The precursor solution was
spin coated on a glass lens substrate at 2000 r/min (1000 r/min)
for 30 s and baked at 130°C for 5 min to fabricate
�C9NH20�7�ZnCl2�2�Pb3Cl11�9 quantum dot films.

B. Mask Fabrication
The mask is fabricated by photolithography on a chrome-
coated glass substrate. This procedure encompasses photoli-
thography, development, etching, and demolding, among other
steps. The pattern of the optical mask is fixed while it is ob-
tained by the optimization of the corresponding network. The
reasons for choosing the fixed mask are as follows. Primarily,
the compact size of the mask ensures a lensless system.
Second, the fixed mask has higher contrast compared with
the dynamic mask using a spatial light modulator. This not
only reduces energy loss in the system but also heightens
the accuracy for specific tasks. The detailed discussion has al-
ready been made in our previous work [35].

C. Dataset Processing and Neural Network Training
All the images of the experiments are grayscale and resized to
match the corresponding network. Converting these images to

binary might further enhance the accuracy for specific tasks.
The networks are trained and tested on a work-station with
a 2-GHz Intel Xeon Gold 6138 central processing unit
(CPU) (32 GB RAM) and one Nvidia GeForce RTX 3090
GPU while using the PyTorch framework.
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