• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 060005 (2019)
Junyuan Huang1, Zejun Shen1、*, Lixin Zhang1, Songbo Wei1, Yingying Yang2, Shijia Zhu1, Jie Qian1, and Lin Chen1
Author Affiliations
  • 1 Department of Petroleum Equipment, Petro China Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
  • 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/LOP56.060005 Cite this Article Set citation alerts
    Junyuan Huang, Zejun Shen, Lixin Zhang, Songbo Wei, Yingying Yang, Shijia Zhu, Jie Qian, Lin Chen. Applications of Laser Surface Treatment Technologies in Petroleum Machinery[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060005 Copy Citation Text show less
    References

    [1] Mao L J, Cai M J[J]. Wang G R. Effect of rotation speed on the abrasive-erosive-corrosive wear of steel pipes against steel casings used in drilling for petroleum. Wear, 410/411, 1-10(2018).

    [2] Yang X Q, Wang H F, Fan J C. Study on erosion wear property and mechanism of 35CrMo steel[J]. China Petroleum Machinery, 45, 72-77(2017).

    [3] Yang X M, Tu Y F, Li L et al. Well-dispersed Chitosan/Graphene oxide nanocomposites[J]. ACS Applied Materials & Interfaces, 2, 1707-1713(2010). http://pubs.acs.org/doi/pdf/10.1021/am100222m

    [4] Kong X Y, Yan M K, Zhang L et al. QPQ surface treatment technology and test research for improving erosion resistance property of tools[J]. Oil Field Equipment, 46, 41-45(2017).

    [5] Shi Y H, Ye Q S, Liang P et al. Naphthenic acid corrosion and protection of petrochemical industry process equipment[J]. Materials Protection, 50, 68-73, 78(2017).

    [6] Koscher B A, Swabeck J K, Bronstein N D et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 139, 6566-6569(2017). http://www.ncbi.nlm.nih.gov/pubmed/28448140

    [7] Gao B, Zhang R L, He M S et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 90, 433-440(2016). http://www.sciencedirect.com/science/article/pii/S1359835X16302688

    [8] Zang C F, Liu C S, Zhang X B et al. Research progress of laser modification techniques used on roller surface[J]. Materials Review, 24, 6-10(2010).

    [9] He B L, Liu J, Wan D Q. Application of laser in processing of magnesium alloy[J]. Hot Working Technology, 39, 113-116(2010).

    [10] Yilbas B S, Karatas C, Karakoc H et al. Laser surface treatment of aluminum based composite mixed with B4C particles[J]. Optics & Laser Technology, 66, 129-137(2015). http://www.sciencedirect.com/science/article/pii/S0030399214002187

    [11] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: From science to industry[J]. Light: Science & Applications, 5, e16133(2016). http://www.nature.com/articles/lsa2016133

    [12] Song L P. Laser surface modification and application[J]. Physics and Engineering, 20, 42-44(2010).

    [13] Taylor L L, Scott R E, Qiao J. Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon[J]. Optical Materials Express, 8, 648-658(2018).

    [14] Gupta R K, Sundar R, Kumar B S et al. A hybrid laser surface treatment for refurbishment of stress corrosion cracking damaged 304L stainless steel[J]. Journal of Materials Engineering and Performance, 24, 2569-2576(2015). http://link.springer.com/article/10.1007/s11665-015-1530-1

    [15] Verezub O, Kálazi Z, Buza G et al. Classification of laser beam induced surface engineering technologiesand in situ synthesis of steel matrix surface nanocomposites[J]. Surface Engineering, 27, 428-435(2011). http://www.tandfonline.com/doi/abs/10.1179/174329409X446296

    [16] Zhang Z Y, Zhang J Y, Wang Y B et al. Surface cleaning of hot-rolled sheet steel by laser ablation of oxide layer using a 100-ns high-repetition frequency pulsed laser[J]. Optical Engineering, 56, 116114(2017).

    [17] Gu Y, Zhong M L, Ma M X et al. Fabrication of nanoporous Manganese coatings by selective electrochemical De-alloying of the nobler copper component from laser cladding Cu-Mn alloys[J]. Chinese Journal of Lasers, 38, 0603027(2011).

    [18] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic Micro-Nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017). http://www.ncbi.nlm.nih.gov/pubmed/28665579/

    [19] Ge P F. Application of laser quenching technology in surface hardening of drill pipe joint threads[J]. Inner Mongolia Petrochemical Industry, 41, 119-120(2015).

    [20] Hao G H. Research and application of laser quenching technology for spherical floating bearings of cone bit[D]. Chengdu: Southwest Petroleum University(2016).

    [21] Hua X J, Hao J W, Wang R et al. Laser quenching technology and friction & wear properties of mud pump high chromium iron material[J]. Surface Technology, 46, 215-220(2017).

    [22] Sang J X, Shen J, Zhang X K. A study on the laser quenching of 20CrMnTi gear steel[J]. China's Manganese Industry, 35, 117-121(2017).

    [23] Cheng Y Y, Wang Y, Han B et al. Microstructure and properties of 35CrMoA steel in laser quenching-nitriding[J]. Chinese Journal of Lasers, 37, 250-255(2010).

    [24] Su H, Ma B, Yi Y H et al. Microstructure and properties of 42CrMo after laser surface melting and quenching[J]. Ordnance Material Science and Engineering, 34, 84-86(2011).

    [25] Feng H, Li J F, Sun J. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 41, 0803003(2014).

    [26] Wang Y X. Microstructure and properties of medium carbon low-alloy steels treated by plasma nitriding and laser quenching[D]. Harbin: Harbin Institute of Technology(2015).

    [27] Sun Q. Laser cladding mechanical maintenance in petrochemical applications[J]. Technological Development of Enterprise, 30, 94-95(2011).

    [28] Cheng H, Zheng G, Qin C et al. Exploration on laser cladding repair technology for plunger in water injection pump[J]. Machinery, 55, 47-49(2017).

    [29] Xiao Z. Analysis of steam turbine cylinder joint surface deformation and laser cladding repairing[J]. Petro-Chemical Equipment, 46, 51-56(2017).

    [30] Zhang J C, Feng A X, Xue W et al. Research on crack susceptibility and mechanical properties of CaF2/Ni composite coating by laser cladding[J]. Applied Laser, 37, 22-26(2017).

    [31] Sun X L, Han B[J]. Effect of rare earth elements on microstructure and properties of laser alloying layers on N80 oil tube Welding & Joining, 2017, 64-66.

    [32] Wang Y, Du J S, Yao J H. The research of laser alloying on the surface of 40cr steel screw[J]. Applied Laser, 27, 470-472(2007).

    [33] Yao J H, Yu C Y, Kong F Z et al. Laser alloying and quenching of steam turbine blades[J]. Journal of Power Engineering, 27, 652-656(2007).

    [34] Kong D J, Long D, Ye C D et al. Effects of laser shock wave on fatigue properties of X80 pipeline steel welded joints[J]. Transaction of Materials and Heat Treatment, 35, 103-108(2014).

    [35] Dai W. A split lip seal method by high energy laser[J]. Petro-Chemical Equipment, 42, 45-48(2013).

    [36] Chang Q Y, Qi Y, Wang B et al. Tribological influence of laser surface textures on 45 steel under dry sliding[J]. Journal of Mechanical Engineering, 53, 148-154(2017).

    [37] Chen Z Y, Zhou G J, Chen Z H. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching[J]. Materials Science and Engineering: A, 534, 536-541(2012). http://www.sciencedirect.com/science/article/pii/S0921509311013608

    [38] Zheng Y L, Hu Q W, Li C Y et al. A novel laser surface compositing by selective laser quenching to enhance railway service life[J]. Tribology International, 106, 46-54(2017). http://www.sciencedirect.com/science/article/pii/S0301679X16303309

    [39] Yan M F, Wang Y X, Chen X T et al. Laser quenching of plasma nitrided 30CrMnSiA steel[J]. Materials & Design, 58, 154-160(2014). http://www.sciencedirect.com/science/article/pii/S0261306914000818

    [40] Shi C X, Jiang Y L, Mei Z H et al. Application of laser surface hardening technology for API tubing threads[J]. Oil Field Equipment, 39, 75-78(2010).

    [41] Wang Y L, Xu S R, Hui Y L. Research on laser quenching process of 20CrMnMo gears by finite element method and experiment[J]. The International Journal of Advanced Manufacturing Technology, 87, 1013-1021(2016). http://link.springer.com/10.1007/s00170-016-8534-3

    [42] Lusquiños F, Conde J C, Bonss S et al. Theoretical and experimental analysis of high power diode laser (HPDL) hardening of AISI 1045 steel[J]. Applied Surface Science, 254, 948-954(2007). http://www.sciencedirect.com/science/article/pii/S0169433207011312

    [43] Hui Y L, Wang Y L, Yao C C. Temperature field analysis of laser hardening of 18CrNi8 gear based on ANSYS[J]. Journal of Mechanical Transmission, 39, 102-105, 134(2015).

    [44] Paydas H, Mertens A, Carrus R et al. Laser cladding as repair technology for Ti-6Al-4V alloy: Influence of building strategy on microstructure and hardness[J]. Materials & Design, 85, 497-510(2015).

    [45] Weng F, Chen C Z, Yu H J. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 58, 412-425(2014). http://www.sciencedirect.com/science/article/pii/S0261306914001095

    [46] Zhang Z L, Qin K M, Li F et al. Surface abrasion resistance performance of laser cladding coating on oil pumping polished rod[J]. Science Technology and Engineering, 10, 3978-3981(2010).

    [47] Sun J B, Li M Y, Wang Y et al. -08-01[P]. corrosion resistant iron-based alloy laser-cladding petroleum drill stem joint: CN102619477A.(2012).

    [48] Yu C X, Jing C N, Li H X[J]. Forming mechanism and controlling method of laser cladding crack Aeronautical Manufacturing Technology, 2012, 75-79.

    [49] Makuch N, Kulka M, Dziarski P et al. Laser surface alloying of commercially pure titanium with boron and carbon[J]. Optics and Lasers in Engineering, 57, 64-81(2014). http://www.sciencedirect.com/science/article/pii/S0143816614000207

    [50] Kulka M, Mikolajczak D, Makuch N et al. Wear resistance improvement of austenitic 316L steel by laser alloying with boron[J]. Surface and Coatings Technology, 291, 292-313(2016). http://www.sciencedirect.com/science/article/pii/S0257897216301177

    [51] Liu T, Sun G F, Zhang Y K. Microstructure and wear resistance of NiCr-Al2O3 coating alloyed with 45# steel laser[J]. Surface Technology, 45, 64-69(2016).

    [52] Adebiyi D I. Popoola A P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying[J]. Materials & Design, 74, 67-75(2015). http://www.sciencedirect.com/science/article/pii/S0261306915000564

    [53] Guo H L, Han B. Effect of molybdenum element on microstructure and properties of laser alloying layers on N80 oil tube[J]. Welded Pipe and Tube, 39, 5-8(2016).

    [54] Wang F, Zuo H, Zhao L et al. Surface quality and property of copper treated by laser shock peening[J]. Laser & Optoelectronics Progress, 54, 041410(2017).

    [55] Lei Z L, Tian Z, Chen Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 55, 030005(2018).

    [56] Chen Y M, Zhou L Z, Yan F et al. Mechanism and quality evaluation of laser cleaning of aluminum alloy[J]. Chinese Journal of Lasers, 44, 1202005(2017).

    Junyuan Huang, Zejun Shen, Lixin Zhang, Songbo Wei, Yingying Yang, Shijia Zhu, Jie Qian, Lin Chen. Applications of Laser Surface Treatment Technologies in Petroleum Machinery[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060005
    Download Citation