• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 060005 (2019)
Junyuan Huang1, Zejun Shen1、*, Lixin Zhang1, Songbo Wei1, Yingying Yang2, Shijia Zhu1, Jie Qian1, and Lin Chen1
Author Affiliations
  • 1 Department of Petroleum Equipment, Petro China Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
  • 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/LOP56.060005 Cite this Article Set citation alerts
    Junyuan Huang, Zejun Shen, Lixin Zhang, Songbo Wei, Yingying Yang, Shijia Zhu, Jie Qian, Lin Chen. Applications of Laser Surface Treatment Technologies in Petroleum Machinery[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060005 Copy Citation Text show less
    Classification of laser surface treatment technologies
    Fig. 1. Classification of laser surface treatment technologies
    Microstructures. (a) Laser hardened microstructure; (b) metallographic microstructure in laser hardened region; (c) boundary microstructure in laser hardened region; (d) metallographic phase in matrix microstructure
    Fig. 2. Microstructures. (a) Laser hardened microstructure; (b) metallographic microstructure in laser hardened region; (c) boundary microstructure in laser hardened region; (d) metallographic phase in matrix microstructure
    Schematic of laser cladding process[44]
    Fig. 3. Schematic of laser cladding process[44]
    Abrasion loss of laser cladding layer and 20CrMo matrix
    Fig. 4. Abrasion loss of laser cladding layer and 20CrMo matrix
    Relationship between Mo content and hardness of alloyed layer
    Fig. 5. Relationship between Mo content and hardness of alloyed layer
    Schematic of laser shock[54]
    Fig. 6. Schematic of laser shock[54]
    Influence of 45# steel surface texture on friction factor (52HRC)[36]
    Fig. 7. Influence of 45# steel surface texture on friction factor (52HRC)[36]
    Influences of laser parameters on pit diameter and depth. (a) Number; (b) speed; (c) power; (d) frequency
    Fig. 8. Influences of laser parameters on pit diameter and depth. (a) Number; (b) speed; (c) power; (d) frequency
    MachinepartTechnologyMaterialLaserPower /kWSpeed /(mm·s-1)Pre-processinghardnessPost-processinghardnessImprovedperformanceYear
    Hot rolledsteelLasercleaningQ235Nd∶YAG0.05-0.60HRC16Oxide layereffectivelyremoved2017[16]
    Lasercladding ofCu-Mnalloys45CO2Nano porouscoatingsuccessfullyprepared2011[17]
    PipeLaserquenching37CrMnMo21200HRC34HRC60Wearresistance/Hardeningdepth2015[19]
    BearingLaserquenching18CrNiMoCO21.155HRC11HRC65Hardness/Wear resistance2016[20]
    MudpumplinerLaserquenchinghigh-chromiumironCO22.517HRC47-52HRC107Wearresistance/Service life2017[21]
    GearLaserquenching20CrMnTiCO20.1516HRC52HRC62Wearresistance/Corrosionresistance2017[22]
    OilpumpLaserquenching/nitriding35CrMoACO2233HRC32HRC67Hardness/Wearresistance2010[23]
    Laserfusion/quenching42CrMoFiber1.53.3HRC31HRC59Hardness2011[24]
    BentaxleLasercladding ofFe base alloy45CO248.3HRC15HRC53Hardness2014[25]
    Laserquenching/nitriding30CrMnSiCO21HRC30HRC62Hardness/Thickness2015[26]
    BlowerrotorLasercladding ofNi basepowder40CrCO22HRC25Recovered2011[27]
    WaterpumpplungerLasercladding ofNi basepowder451.25HRC45HRC53Servicelife/Cost2017[28]
    SteamturbinecylinderLasercladding ofCo basepowder251.211.6Repaired2017[29]
    Lasercladding ofCaF2/NipowderQ235AFiber2.22.6HRC13HRC66Hardness2017[30]
    N80tubingLaseralloying ofalloypowderCO22.8~3.111.6HRC24HRC55Hardness/Corrosionresistance2017[31]
    ScrewLasernanoalloying40CrCO22~2.53.3~6.6HRC25HRC62Hardness/Service life2007[32]
    TurbinebladeLaseralloying ofalloypowder2Cr13CO23.3~6.6HRC25HRC60Hardness2007[33]
    Weldedjoint ofX80pipelineLasershockpeeningX80Nd∶YAGFatiguestrength2014[34]
    Dry gasseal ringLaserablationSiC/SiNiFiberFlexibleprocessing2013[35]
    Lasersurfacetexture45FiberHardness/Wearresistance2017[36]
    Table 1. Applications of laser surface treatment in petroleum machinery
    QuenchingmethodHardenedlayerhardnessHardenedlayer wearresistanceHardenedlayer fatigueresistanceProductionefficiencyControllabilityProcessingcostDeformation
    LaserquenchingHigherBetterBetterHighHigherHighSmaller
    InductionhardeningHighGoodGoodHigherHighModerateSmall
    FlamehardeningLowerGoodGoodLowLowerLowerLarge
    PlasmaquenchingHigherBetterGoodHighLowerModerateSmaller
    Carburizing andquenchingHighGoodGoodHighHigherModerateSmaller
    Nitriding andquenchingHigherGeneralGeneralLowerHigherHighSmaller
    CarbonitridingHigherBetterBetterLowerHighHighSmaller
    Table 2. Comparison between laser quenching and other common surface quenching methods
    SampleNo.Name ofartifactTestitemAPI standardtoleranceLaser pre-quenchingtoleranceAppearanceLaserhardeningtoleranceAppearance
    2RYCollarinternalthreadTightness /mm4.85±3.815.68Qualified5.72Qualified
    Pitch deviation /(mm/25.4 mm)±0.076-0.02Qualified-0.02Qualified
    Taper /(mm·mm-1)62.5+5.208or 62.5-2.663.0Qualified63.0Qualified
    Depthdeviation /mm+0.050 or-0.102-0.02Qualified-0.02Qualified
    2RYAPipeoutsidethreadTightness /mm±3.810.80Qualified0.84Qualified
    Pitch deviation /(mm/25.4 mm)±0.076-0.013Qualified-0.013Qualified
    Taper /(mm·mm-1)62.5+5.208or 62.5-2.663.5Qualified63.5Qualified
    Depthdeviation /mm+0.050 or-0.102-0.02Qualified-0.02Qualified
    Table 3. Detection and comparison of dimensional limit deviations of ?73.02 mm N80 tubing before and after laser quenching[40]
    Junyuan Huang, Zejun Shen, Lixin Zhang, Songbo Wei, Yingying Yang, Shijia Zhu, Jie Qian, Lin Chen. Applications of Laser Surface Treatment Technologies in Petroleum Machinery[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060005
    Download Citation