• Advanced Photonics
  • Vol. 5, Issue 3, 036001 (2023)
Jingxin Zhang1, Peixing Li2, Ray C. C. Cheung2, Alex M. H. Wong2、3、*, and Jensen Li1、*
Author Affiliations
  • 1The Hong Kong University of Science and Technology, Department of Physics, Hong Kong, China
  • 2City University of Hong Kong, Department of Electrical Engineering, Hong Kong, China
  • 3City University of Hong Kong, State Key Laboratory of Terahertz and Millimeter Waves, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.5.3.036001 Cite this Article Set citation alerts
    Jingxin Zhang, Peixing Li, Ray C. C. Cheung, Alex M. H. Wong, Jensen Li. Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface[J]. Advanced Photonics, 2023, 5(3): 036001 Copy Citation Text show less
    References

    [1] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115(1936).

    [2] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [3] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [4] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [5] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [6] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [7] Y. Yan et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [8] J. Wang et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [9] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [10] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [11] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [12] L. Zhu et al. Optical vortex lattice: an exploitation of orbital angular momentum. Nanophotonics, 10, 2487-2496(2021).

    [13] K. Y. Bliokh, F. Nori. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A, 86, 033824(2012).

    [14] N. Jhajj et al. Spatiotemporal optical vortices. Phys. Rev. X, 6, 031037(2016).

    [15] S. Hancock et al. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [16] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [17] S. Hancock, S. Zahedpour, H. Milchberg. Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses. Phys. Rev. Lett., 127, 193901(2021).

    [18] X. Zhang et al. Basis function approach for diffractive pattern generation with Dammann vortex metasurfaces. Sci. Adv., 8, eabp8073(2022).

    [19] X. Zhang et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces. Laser Photonics Rev., 16, 2100451(2022).

    [20] L. Rego et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [21] A. Picón et al. Transferring orbital and spin angular momenta of light to atoms. New J. Phys., 12, 083053(2010).

    [22] D. Gao et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [23] M. Li et al. Orbital angular momentum in optical manipulations. J. Opt., 24, 114001(2022).

    [24] E. Wright, J. Arlt, K. Dholakia. Toroidal optical dipole traps for atomic Bose–Einstein condensates using Laguerre–Gaussian beams. Phys. Rev. A, 63, 013608(2000).

    [25] A. Turpin et al. Blue-detuned optical ring trap for Bose–Einstein condensates based on conical refraction. Opt. Express, 23, 1638-1650(2015).

    [26] J. W. McIver et al. Light-induced anomalous Hall effect in graphene. Nat. Phys., 16, 38-41(2020).

    [27] C. Bao et al. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys., 4, 33-48(2022).

    [28] H. B. Sedeh, M. M. Salary, H. Mosallaei. Time-varying optical vortices enabled by time-modulated metasurfaces. Nanophotonics, 9, 2957-2976(2020).

    [29] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [30] L. Zhang et al. Breaking reciprocity with space-time-coding digital metasurfaces. Adv. Mater., 31, 1904069(2019).

    [31] J. Y. Dai et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface. Laser Photonics Rev., 14, 1900133(2020).

    [32] X. Wang et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface. Adv. Sci., 9, 2105960(2022).

    [33] J. Zhao et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 6, 231-238(2019).

    [34] S. R. Wang et al. Asynchronous space-time-coding digital metasurface. Adv. Sci., 9, 2200106(2022).

    [35] Q. Hu et al. Arbitrary and dynamic Poincaré sphere polarization converter with a time-varying metasurface. Adv. Opt. Mater., 10, 2101915(2022).

    [36] J. C. Ke et al. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface. Small Struct., 2, 2000060(2021).

    [37] Q. Hu et al. On-demand dynamic polarization meta-transformer. Laser Photonics Rev., 17, 2200479(2023).

    [38] T. Kaiser et al. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt. Express, 17, 9347-9356(2009).

    [39] F. Hosseini et al. Temporal shaping and time-varying orbital angular momentum of displaced vortices. Optica, 7, 1359-1371(2020).

    [40] J. Guo et al. Reconfigurable terahertz metasurface pure phase holograms. Adv. Opt. Mater., 7, 1801696(2019).

    [41] X. Guo et al. Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 8, 123(2019).

    [42] Y. Jia et al. Orbital angular momentum multiplexing in space-time thermoacoustic metasurfaces. Adv. Mater., 34, 2202026(2022).

    [43] V. Bobkova et al. Optical grinder: sorting of trapped particles by orbital angular momentum. Opt. Express, 29, 12967-12975(2021).

    Jingxin Zhang, Peixing Li, Ray C. C. Cheung, Alex M. H. Wong, Jensen Li. Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface[J]. Advanced Photonics, 2023, 5(3): 036001
    Download Citation