• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2240011 (2022)
Cheng Zhang1, Hongxin Lin1、*, Ying Hu1, Jian Sui2, Lisheng Lin1、**, and Buhong Li1
Author Affiliations
  • 1Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
  • 2Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350013, P. R. China
  • show less
    DOI: 10.1142/S1793545822400119 Cite this Article
    Cheng Zhang, Hongxin Lin, Ying Hu, Jian Sui, Lisheng Lin, Buhong Li. Monitoring of time-resolved singlet oxygen luminescence at 1270nm by an optical fiber detection system[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240011 Copy Citation Text show less
    References

    [1] S. Ayan, G. Gunaydin, N. Yesilgul-Mehmetcik, M. E. Gedik, O. Seven, E. U. Akkaya. Proof-of-principle for two-stage photodynamic therapy: Hypoxia triggered release of singlet oxygen. Chem. Commun., 56, 14793-14796(2020).

    [2] J. Du, T. Shi, S. Long, P. Chen, W. Sun, J. Fan, X. Peng. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coord. Chem. Rev., 427, 213604(2021).

    [3] S. H. Yun, S. J. Kwok. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 1, 1-16(2017).

    [4] P. C. Lo, M. S. Rodríguez-Morgade, R. K. Pandey, D. K. Ng, T. Torres, F. Dumoulin. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev., 49, 1041-1056(2020).

    [5] H. Zhang, Y. H. Li, Y. Chen, M. M. Wang, X. S. Wang, X. B. Yin. Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites. Sci. Rep., 7, 44153(2017).

    [6] J. Chen, T. Fan, Z. Xie, Q. Zeng, P. Xue, T. Zheng, H. Zhang. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 237, 119827(2020).

    [7] G. Gunaydin, M. E. Gedik, S. Ayan. Photodynamic therapy—Current limitations and novel approaches. Front. Chem., 9, 400(2021).

    [8] K. Wang, B. Yu, J. L. Pathak. An update in clinical utilization of photodynamic therapy for lung cancer. J. Cancer, 12, 1154(2021).

    [9] A. G. Niculescu, A. M. Grumezescu. Photodynamic therapy—An up-to-date review. Appl. Sci., 11, 3626(2021).

    [10] X. Li, J. F. Lovell, J. Yoon, X. Chen. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 17, 657-674(2020).

    [11] Y. Zhao, T. Moritz, M. F. Hinds, J. R. Gunn, J. R. Shell, B. W. Pogue, S. J. Davis. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. J. Biophoton., 14, e202100088(2021).

    [12] J. C. Schlothauer, J. Falckenhayn, T. Perna, S. Hackbarth, B. Röder. Luminescence investigation of photosensitizer distribution in skin: Correlation of singlet oxygen kinetics with the microarchitecture of the epidermis. J. Biomed. Opt., 18, 115001(2013).

    [13] N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, R. H. Hadfield. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt. Express, 21, 5005-5013(2013).

    [14] J. R. Kanofsky. Measurement of singlet-oxygen in vivo: Progress and pitfalls. Photochem. Photobiol., 87, 14-17(2011).

    [15] B. Chen, C. Crane, C. He, D. Gondek, P. Agharkar, M. D. Savellano, B. W. Pogue. Disparity between prostate tumor interior versus peripheral vasculature in response to verteporfin-mediated vascular-targeting therapy. Int. J. Cancer, 123, 695-701(2008).

    [16] S. Hackbarth, W. Islam, J. Fang, V. Subr, B. Röder, T. Etrych, H. Maeda. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem. Photobiol. Sci., 18, 1304-1314(2019).

    [17] X. Xu, L. Lin, B. Li. Automatic protocol for quantifying the vasoconstriction in blood vessel images. Biomed. Opt. Express, 11, 2122-2136(2020).

    [18] L. Lin, H. Lin, Y. Shen, D. Chen, Y. Gu, B. C. Wilson, B. Li. Singlet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapy. Photochem. Photobiol., 96, 646-651(2020).

    [19] N. R. Gemmell, A. McCarthy, M. M. Kim, I. Veilleux, T. C. Zhu, G. S. Buller, B. C. Wilson, R. H. Hadfield. A compact fiber-optic probe-based singlet oxygen luminescence detection system. J. Biophoton., 10, 320-326(2017).

    [20] A. Eichner, F. P. Gonzales, A. Felgenträger, J. Regensburger, T. Holzmann, W. Schneider-Brachert, T. Maisch. Dirty hands: Photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochem. Photobiol. Sci., 12, 135-147(2013).

    [21] S. Hackbarth, J. Schlothauer, A. Preuß, B. Röder. New insights to primary photodynamic effects—Singlet oxygen kinetics in living cells. J. Photochem. Photobiol. B, 98, 173-179(2010).

    [22] V. Mashayekhi, C. Op’t Hoog, S. Oliveira. Vascular targeted photodynamic therapy: A review of the efforts towards molecular targeting of tumor vasculature. J. Porphyr. Phthalocyanines, 23, 1229-1240(2019).

    [23] J. H. Correia, J. A. Rodrigues, S. Pimenta, T. Dong, Z. Yang. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics, 13, 1332(2021).

    Cheng Zhang, Hongxin Lin, Ying Hu, Jian Sui, Lisheng Lin, Buhong Li. Monitoring of time-resolved singlet oxygen luminescence at 1270nm by an optical fiber detection system[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240011
    Download Citation