• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 065901 (2021)
Hiroki Morita1, Tadashi Ogitsu2, Frank R. Graziani2, and Shinsuke Fujioka1
Author Affiliations
  • 1Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
  • 2Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
  • show less
    DOI: 10.1063/5.0053621 Cite this Article
    Hiroki Morita, Tadashi Ogitsu, Frank R. Graziani, Shinsuke Fujioka. Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation[J]. Matter and Radiation at Extremes, 2021, 6(6): 065901 Copy Citation Text show less
    References

    [1] W.Fox, S. X.Hu, D. H.Barnak, K.Germaschewski, D. B.Schaeffer, A.Bhattacharjee, D.Haberberger, G.Fiksel, R. K.Follett. High-Mach number, laser-driven magnetized collisionless shocks. Phys. Plasmas, 24, 122702(2017).

    [2] H.Chen, A. E.Raymond, E.Del Rio, C.Mileham, J.Nees, P. T.Campbell, N.Alexander, L.Willingale, C.Stoeckl, A. G.Thomas, K.Krushelnick, M. S.Wei, A.Maksimchuk, W.Fox, P. M.Nilson, V.Chvykov, A.McKelvey, P.Fitzsimmons, V.Yanovsky, C.Zulick, A.Bhattacharjee, B.Hou, C. F.Dong. Relativistic-electron-driven magnetic reconnection in the laboratory. Phys. Rev. E, 98, 043207(2018).

    [3] B. G.Logan, C. J.Werner, G. B.Zimmerman, L. J.Perkins. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas, 20, 072708(2013).

    [4] D.Nakamura, H.Sawabe, S.Takeyama, A.Ikeda, Y. H.Matsuda. Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum., 89, 095106(2018).

    [5] J. P.Knauer, P. Y.Chang, R. D.Petrasso, R.Betti, C. K.Li, O. V.Gotchev, J. A.Frenje, M. J.-E.Manuel, J. R.Rygg, O.Polomarov, F. H.Séguin, D. D.Meyerhofer. Compressing magnetic fields with high-energy lasers. Phys. Plasmas, 17, 056318(2010).

    [6] A.Sunahara, T.Johzaki, S.Fujioka, T.Watanabe, H.Nakashima, Z.Zhang, Y.Hironaka, N.Yamamoto, H.Nishimura, K.Shigemori, H.Shiraga, H.Azechi, K.Ishihara. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep., 3, 1170(2013).

    [7] C.Wang, G.Zhao, B.Zhu, D.Yuan, G.Liang, Y.Li, B.Han, J.Zhang, J.Zhu, N.Hua, F.Wang, H.Wei, Z.Zhang, B.Zhu, J.Zhong, Z.Fang, W.Jiang. Generation of strong magnetic fields with a laser-driven coil. High Power Laser Sci. Eng., 6, e38(2018).

    [8] G.Zhao, S.Kondo, H. G.Wei, K.Zhang, Y.Hara, X. X.Pei, Y.Sakawa, Y. T.Li, Z.Zhang, Y. F.Li, G. Y.Liang, B. J.Zhu, S.Fujioka, F. L.Wang, J. Y.Zhong, T.Sano. Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target. Phys. Plasmas, 23, 032125(2016).

    [9] K.Matsuo, Y.Sakawa, S.Sakata, Z.Zhang, S.Kojima, P.Nicolai, Y.Arikawa, H.Azechi, H.Nagatomo, Y.Kuramitsu, T.Sano, T.Morita, S. H.Lee, S.Fujioka, K. F. F.Law. Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field. Phys. Rev. E, 95, 053204(2017).

    [10] T.Morita. Topological investigation of laser ion acceleration. Plasma Phys. Controlled Fusion, 62, 105003(2020).

    [11] T.Yabuuchi, K. U.Akli, J. S.Green, D. S.Hey, C. D.Murphy, R.Kodama, R. J.Clarke, P.Simpson, C.Stoeckl, R.Stephens, J. R.Davies, P. A.Norreys, K. L.Lancaster, H.Habara, M.Zepf, R. R.Freeman, K.Krushelnick, M.Nakatsutsumi, M. H.Key. Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 ×1020 W cm−2. Phys. Rev. Lett., 98, 125002(2007).

    [12] R. G.Evans, J. A.King, K. U.Akli, V. M.Ovchinnikov, M.Zepf, F. N.Beg, Z.Najmudin, H.Azechi, H.Habara, C.Bellei, J.Waugh, K. A.Tanaka, R.Stephens, A.McPhee, R. R.Freeman, K. L.Lancaster, L.Van Woerkom, R.Heathcote, T.Tanimoto, N. C.Lopes, M. H.Key, J. R.Davies, K.Takeda, T.Ma, K.Markey, N. C.Woolsey, R.Onofrei, P. A.Norreys, J. S.Green, P.Nilson, W.Theobald, A. J.MacKinnon. Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett., 100, 015003-015004(2008).

    [13] H.-b.Cai, S.-p.Zhu, X. T.He. Effects of the imposed magnetic field on the production and transport of relativistic electron beams. Phys. Plasmas, 20, 072701(2013).

    [14] J.-R.Marquès, R.Bouillaud, J. E.Cross, J.-L.Dubois, G.Gregori, D.Batani, N.Woolsey, J. J.Santos, Z.Zhang, L.Giuffrida, V. T.Tikhonchuk, R.Crowston, S.Dorard, S.Kojima, M.Bailly-Grandvaux, E.Loyez, S.Hulin, S.Sakata, J.Servel, A.Morace, P.Forestier-Colleoni, J. J.Honrubia, M.Ehret, M.Chevrot, P.Nicola?, F.Serres, C.Bellei, G.Schaumann, M.Roth, S.Fujioka. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Commun., 9, 102(2018).

    [15] S.Sakata, T.Norimatsu, S.Kojima, Y.Arikawa, Y.Sentoku, K.Mima, T.Shiroto, H.Sakagami, A.Syuhada, N.Miyanaga, H.Morita, M.Nakai, A.Morace, T.Ozaki, R.Kodama, A.Yao, N.Iwata, H.Sawada, Y.Abe, H.Kishimoto, K. F. F.Law, Y.Nakata, S.Lee, H.Nishimura, T.Johzaki, K.Matsuo, J.Kawanaka, J. J.Santos, A.Yogo, K.Yamanoi, A.Sunahara, S.Fujioka, H.Azechi, H.Shiraga, Y.Iwasa, M.Hata, S.Tokita, M.Bailly-Grandvaux, H.Nagatomo. Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nat. Commun., 9, 3937(2018).

    [16] A.Sunahara, K. F. F.Law, T.Sano, M.Hata, Y.Iwasa, A.Yogo, H.Azechi, S.Kojima, H.Sakagami, Y.Abe, S.Lee, H.Nagatomo, S.Fujioka, N.Higashi, M.Nakai, H.Morita, H.Shiraga, S.Tokita, N.Iwata, Y.Arikawa, H.Sawada, Y.Ochiai, K.Matsuo, T.Norimatsu, Y.Nakata, A.Morace, K.Mima, S.Sakata, K.Yamanoi, T.Johzaki, R.Kodama, T.Ozaki, Y.Sentoku, J.Kawanaka. Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse. Phys. Rev. Lett., 124, 035001(2020).

    [17] K. S.Anderson, G.Fiksel, W.Theobald, C.Stoeckl, A. A.Solodov, R. B.Stephens, L. C.Jarrott, T. C.Sangster, G.McKiernan, J. J.Santos, H. S.McLean, H.Sawada, F. N.Beg, A.Shvydky, R.Epstein, V. Y.Glebov, F. J.Marshall, M. S.Wei, P. K.Patel, S.Ivancic, E. M.Giraldez, F.Pérez, P. M.Nilson, C.Mileham, H.Habara. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion. Nat. Commun., 5, 5785(2014).

    [18] F. N.Beg, B.Qiao, H. S.Mclean, P. K.Patel, C.Stoeckl, M. S.Wei, C.McGuffey, J. J.Santos, E. M.Giraldez, W.Theobald, H.Chen, R. B.Stephens, R. W.Luo, T.D?ppner, T.Yabuuchi, J.Delettrez, T.Iwawaki, V. Y.Glebov, C.Mileham, A. A.Solodov, L. C.Jarrott, R.Betti, H.Habara, M. H.Key, F. J.Marshall, H.Sawada. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets. Nat. Phys., 12, 499-504(2016).

    [19] H.Azechi, A.Sunahara, S.Fujioka, H.Morita, Y.Arikawa. Numerical analysis of pulsed magnetic field diffusion dynamics in gold cone target. Phys. Plasmas, 25, 094505(2018).

    [20] X.Sun, L.Jia, Z.Fu, Q.Chen. Electrical conductivity of warm dense tungsten. High Energy Density Phys., 9, 781-786(2013).

    [21] C. S.Goyon, K. F. F.Law, H.Morita, S.Fujioka, G. J.Williams, J. D.Moody, B. B.Pollock. Dynamics of laser-generated magnetic fields using long laser pulses. Phys. Rev. E, 103, 033201(2021).

    [22] D. M.Chambers, C.Courtois, N. C.Woolsey, R. A. D.Grundy, A. D.Ash. Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys., 98, 054913(2005).

    [23] W.Fox, L.Gao, G.Fiksel, H.Ji. A simple model for estimating a magnetic field in laser-driven coils. Appl. Phys. Lett., 109, 134103(2016).

    [24] J. J.Santos, A.Poyé, M.Bailly-Grandvaux, V. T.Tikhonchuk. Quasi-stationary magnetic field generation with a laser-driven capacitor-coil assembly. Phys. Rev. E, 96, 023202(2017).

    [25] K. F. F.Law, Z.Zhang, S.Sakata, H.Azechi, S.Kojima, M.Bailly-Grandvaux, K.Kondo, S.Fujioka, C.Bellei, A.Morace, A.Yogo, S.Lee, Y.Arikawa, X.Vaisseau, K.Matsuo, J. J.Santos. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett., 108, 091104(2016).

    [26] S.Patankar, J. D.Bude, V. T.Tikhonchuk, G. J.Williams, B. B.Pollock, J. D.Moody, C.Goyon, M. A.Norton, D. A.Mariscal, E. R.Tubman, C. W.Carr, G. F.Swadling, A. M.Rubenchik. Laser intensity scaling of the magnetic field from a laser-driven coil target. J. Appl. Phys., 127, 083302(2020).

    [27] L. M.Goldman, R. L.Keck, K.Tanaka, M. C.Richardson, W.Seka. Observations of high-energy electron distributions in laser plasmas. Phys. Fluids, 27, 2762(1984).

    [28] R. A.Haas, H. G.Ahlstrom, J. F.Holzrichter, K. R.Manes. Light-plasma interaction studies with high-power glass laser. J. Opt. Soc. Am., 67, 717-726(1977).

    [29] K.Lee, D. W.Forslund, J. M.Kindel. Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett., 39, 284-287(1977).

    [30] W.Priedhorsky, D.Lier, D.Gerke, R.Day. Hard-x-ray measurements of 10.6-μm laser-irradiated targets. Phys. Rev. Lett., 47, 1661-1664(1981).

    [31] S.Christian, F.Wolfgang, C.Andreas. Review of FDTD time-stepping schemes for efficient simulation of electric conductive media. Microwave Opt. Technol. Lett., 25, 16-21(2000).

    [32] S.Fujioka, G.Korn, D.Margarone, L.Giuffrida, M.De Marco, F.Schillaci, Z.Zhang. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields. AIP Adv., 8, 025103(2018).

    [33] R. M.More, Y. T.Lee. An electron conductivity model for dense plasmas. Phys. Fluids, 27, 1273(1984).

    [34] M. P.Desjarlais. Practical improvements to the Lee-More conductivity near the metal-insulator transition. Contrib. Plasma Phys., 41, 267(2001).

    [35] M.Yousuf, P. C.Sahu, G. K.Rajan. High-pressure and high-temperature electrical resistivity of ferromagnetic transition metals: Nickel and iron. Phys. Rev. B, 34, 8086(1986).

    [36] G.Kresse, J.Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169(1996).

    [37] S.Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).

    [38] M.Stankovski, M. J.Verstraete, M.Delaveau, D.Caliste, D. R.Hamann, F.Da Pieve, D.Adams, C.Espejo, T.Rangel, I.Luka?evi?, Y.Pouillon, Y.Gillet, A.Levitt, A.Bokhanchuk, F.Jollet, M. J. T.Oliveira, E.Bousquet, S.Poncé, X.Gonze, G.Geneste, O.Rubel, A.Lherbier, J. W.Zwanziger, M.Di Gennaro, J.Wiktor, A.Zhou, J.-M.Beuken, B.Amadon, C.Martins, B.Rousseau, F.Abreu Araujo, M.C?té, T.Applencourt, F.Dahm, L.He, S.Le Roux, L.Genovese, M.Giantomassi, F.Liu, A. A.Shukri, C.Audouze, A.Martin, J.Bieder, B.Van Troeye, F.Bruneval, G.Jomard, M.Torrent, B.Dorado, G.-M.Rignanese, A. H.Romero, M. J.Van Setten, A.Gerossier, D.Waroquiers, B.Xu, J.Laflamme Janssen. Recent developments in the ABINIT software package. Comput. Phys. Commun., 205, 106-131(2016).

    [39] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953(1994).

    [40] M. L.Cohen, D. J.Chadi. Special points in the Brillouin zone. Phys. Rev. B, 8, 5747-5753(1973).

    [41] J. D.Pack, H. J.Monkhorst. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188(1976).

    [42] M.Ernzerhof, J. P.Perdew, K.Burke. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [43] M. P.Desjarlais, D.Alfè, M.Pozzo. Electrical and thermal conductivity of liquid sodium from first-principles calculations. Phys. Rev. B, 84, 054203(2011).

    [44] Z.Yuan, L.Meng, L.Yang, F.Zhang, L.Cao, B.Bi, W.Zhou, W.Fan, W.Wang, H.Liu, Y.Gu, C.Tian, D.Liu, L.Shan. Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime. Phys. Plasmas, 26, 122705(2019).

    [45] M. R.Zaghloul, J. M.Doster, J. D.Powell, M. A.Bourham. On the average electron-ion momentum transport cross-section in ideal and non-ideal plasmas. Phys. Lett. A, 262, 86-89(1999).

    [46] M. R.Zaghloul. A simple theoretical approach to calculate the electrical conductivity of nonideal copper plasma. Phys. Plasmas, 15, 042705(2008).

    [47] A. Y.Polishchuk, I. M.Bespalov. Method for calculating the degree of ionization and the thermal and electrical conductivity over a wide range of density and temperature. Sov. Tech. Phys. Lett., 15, 39-41(1989).

    [48] J. R. A.Kramida, N. A.Team, Y.Ralchenko(2018).

    [49] V.Sametoglu, M.Torrent, M.Reid, S. E.Kirkwood, Y. Y.Tsui, V.Recoules, A.Ng, Z.Chen, S.Mazevet, B.Holst. Ab initio model of optical properties of two-temperature warm dense matter. Phys. Rev. B, 90, 035121(2014).

    [50] B.Wilson, V.Recoules, Y. Y.Tsui, A.Ng, P.Sterne, S.Hansen, Z.Chen. dc conductivity of two-temperature warm dense gold. Phys. Rev. E, 94, 033213(2016).

    [51] R.Matula. Resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data, 8, 1147(1979).

    [52] H.Nagatomo, T.Kikuchi, S.Fujioka, K.Takahashi, T.Sasaki, A.Sunahara. A numerical study on the pulse duration dependence of a magnetic field generated using a laser-driven capacitor-coil target. High Energy Density Phys., 36, 100818(2020).

    Hiroki Morita, Tadashi Ogitsu, Frank R. Graziani, Shinsuke Fujioka. Advanced analysis of laser-driven pulsed magnetic diffusion based on quantum molecular dynamics simulation[J]. Matter and Radiation at Extremes, 2021, 6(6): 065901
    Download Citation