• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3140031 (2021)
Zhang Tiangang1、*, Zhang Qian2, Yao Bo2, and Li Baoxuan3
Author Affiliations
  • 1Institute of Civil Aviation Technology, Civil Aviation University of China, Tianjin 300300, China
  • 2College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
  • 3Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
  • show less
    DOI: 10.3788/LOP202158.0314003 Cite this Article Set citation alerts
    Zhang Tiangang, Zhang Qian, Yao Bo, Li Baoxuan. Numerical Simulation of Temperature Field and Stress Field of Ni-Based Laser Cladding Layer on TC4 Surface[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3140031 Copy Citation Text show less
    Material powders for cladding. (a) TC4; (b) Ni60
    Fig. 1. Material powders for cladding. (a) TC4; (b) Ni60
    TruDisk4002 coaxial powder feeding fiber laser
    Fig. 2. TruDisk4002 coaxial powder feeding fiber laser
    Macro-morphology of single-pass laser cladding layer
    Fig. 3. Macro-morphology of single-pass laser cladding layer
    Cross-sectional SEM morphology of single-pass laser cladding layer
    Fig. 4. Cross-sectional SEM morphology of single-pass laser cladding layer
    Gaussian heat source model
    Fig. 5. Gaussian heat source model
    Finite element model
    Fig. 6. Finite element model
    Thermo-physical performance parameters versus temperature. (a) Thermal conductivity; (b) specific heat; (c) density; (d) linear expansion coefficient
    Fig. 7. Thermo-physical performance parameters versus temperature. (a) Thermal conductivity; (b) specific heat; (c) density; (d) linear expansion coefficient
    Mechanical performance parameters versus temperature. (a) Modulus of elasticity; (b) Poisson’s ratio; (c) yield stress
    Fig. 8. Mechanical performance parameters versus temperature. (a) Modulus of elasticity; (b) Poisson’s ratio; (c) yield stress
    Comprehensive heat transfer coefficient versus temperature
    Fig. 9. Comprehensive heat transfer coefficient versus temperature
    Temperature contours at different moments. (a) t=3 s; (b) t=6 s
    Fig. 10. Temperature contours at different moments. (a) t=3 s; (b) t=6 s
    Actual high-definition motion track of laser heat source
    Fig. 11. Actual high-definition motion track of laser heat source
    Temperature contours of local area at t=3 s. (a) Cross section; (b) longitudinal section; (c) magnification of cross section
    Fig. 12. Temperature contours of local area at t=3 s. (a) Cross section; (b) longitudinal section; (c) magnification of cross section
    Residual stress contours after cooling. (a) Surface residual stress; (b) cross-sectional residual stress
    Fig. 13. Residual stress contours after cooling. (a) Surface residual stress; (b) cross-sectional residual stress
    Crack morphology of cladding layer. (a) Edge; (b) bonding area
    Fig. 14. Crack morphology of cladding layer. (a) Edge; (b) bonding area
    No.ParameterValueUnit
    1Laser power1100W
    2Scanning speed400mm·min-1
    3Spot diameter3.0mm
    4Power feeding rate1.4r·min-1
    5Laser focal length16mm
    6Flow of powder feeder7L·min-1
    7Flow of protection gas11L·min-1
    Table 1. Process parameters for laser cladding
    Zhang Tiangang, Zhang Qian, Yao Bo, Li Baoxuan. Numerical Simulation of Temperature Field and Stress Field of Ni-Based Laser Cladding Layer on TC4 Surface[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3140031
    Download Citation