• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2106004 (2021)
Zhiqiang Chen1、2、**, Linghao Cheng1, Yuan Bao2、*, Dawei Liu2, Jianlin Fan2, and Zhitao Chen2
Author Affiliations
  • 1Institute of Photonics Technology, Jinan University, Guangzhou , Guangdong 510632, China
  • 2Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou , Guangdong 510651, China
  • show less
    DOI: 10.3788/LOP202158.2106004 Cite this Article Set citation alerts
    Zhiqiang Chen, Linghao Cheng, Yuan Bao, Dawei Liu, Jianlin Fan, Zhitao Chen. Architecture of Reconfigurable Transmitter Integrated Circuits for Four-Level Pulse Amplitude Modulation Optical Interconnection System[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2106004 Copy Citation Text show less
    References

    [1] Krishnamoorthy A V, Thacker H D, Torudbakken O et al. From chip to cloud: optical interconnects in engineered systems[J]. Journal of Lightwave Technology, 35, 3103-3115(2017).

    [2] Chagnon M. Optical communications for short reach[J]. Journal of Lightwave Technology, 37, 1779-1797(2019).

    [3] El-Fiky E, Samani A, Patel D et al. 400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects[J]. Optics Express, 27, 10258-10268(2019).

    [4] Zhong K P, Zhou X, Huo J H et al. Digital signal processing for short-reach optical communications: a review of current technologies and future trends[J]. Journal of Lightwave Technology, 36, 377-400(2018).

    [5] Mardoyan H, Mestre M A, Estarán J M et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects[J]. Journal of Lightwave Technology, 35, 1253-1259(2017).

    [6] Eiselt N, Muench D, Dochhan A et al. Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G ethernet-based fronthaul architecture[J]. Journal of Lightwave Technology, 36, 1807-1814(2018).

    [7] Sun Y, Lingle R, Shubochkin R et al. SWDM PAM4 transmission over next generation wide-band multimode optical fiber[J]. Journal of Lightwave Technology, 35, 690-697(2017).

    [8] Tanaka S, Simoyama T, Aoki T et al. Ultralow-power (1.59 mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach-Zehnder modulator and 28-nm CMOS driver[J]. Journal of Lightwave Technology, 36, 1275-1280(2018).

    [9] Zhou H H, Li Y, Dong T et al. Improved polar decoding for optical PAM transmission via non-identical Gaussian distribution based LLR estimation[J]. Optics Express, 28, 38456-38464(2020).

    [10] Sun Y, Lingle R, Chang F et al. SWDM PAM4 transmission from 850 to 1066 nm over NG-WBMMF using 100G PAM4 IC chipset with real-time DSP[J]. Journal of Lightwave Technology, 35, 3149-3158(2017).

    [11] Yadav G S, Chuang C Y, Feng K M et al. Reducing computation complexity by using elastic net regularization based pruned Volterra equalization in a 80 Gbps PAM-4 signal for inter-data center interconnects[J]. Optics Express, 28, 38539-38552(2020).

    [12] Ruan X K, Yang F, Zhang L et al. High-speed PAM4 transmission with a GeSi electro-absorption modulator and dual-path neural-network-based equalization[J]. Optics Letters, 45, 5344-5347(2020).

    [13] Wan Z Q, Li J Q, Shu L et al. Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF[J]. Optics Express, 26, 10631-10642(2018).

    [14] Wan Z Q, Li J Q, Shu L et al. 64-Gb/s SSB-PAM4 transmission over 120-km dispersion-uncompensated SSMF with blind nonlinear equalization, adaptive noise-whitening postfilter and MLSD[J]. Journal of Lightwave Technology, 35, 5193-5200(2017).

    [15] Zheng X Q, Zhang C, Lü F X et al. A 40-Gb/s quarter-rate SerDes transmitter and receiver chipset in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 52, 2963-2978(2017).

    [16] Komatsu Y, Shinmyo A, Kato S et al. A 0.25-27-Gb/s PAM4/NRZ transceiver with adaptive power CDR and jitter analysis[J]. IEEE Journal of Solid-State Circuits, 54, 2802-2811(2019).

    [17] Upadhyaya P, Poon C F, Lim S W et al. A fully adaptive 19-58-Gb/s PAM-4 and 9.5-29-Gb/s NRZ wireline transceiver with configurable ADC in 16-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 54, 18-28(2019).

    [18] Frans Y, Shin J, Zhou L et al. A 56-Gb/s PAM4 wireline transceiver using a 32-way time-interleaved SAR ADC in 16-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 52, 1101-1110(2017).

    [19] Kim J, Balankutty A, Dokania R K et al. A 112 Gb/s PAM-4 56 Gb/s NRZ reconfigurable transmitter with three-tap FFE in 10-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 54, 29-42(2019).

    [20] Toprak-Deniz Z, Proesel J E, Bulzacchelli J F et al. A 128-Gb/s 1.3-pJ/b PAM-4 transmitter with reconfigurable 3-Tap FFE in 14-nm cmos[J]. IEEE Journal of Solid-State Circuits, 55, 19-26(2020).

    [21] Zheng X Q, Ding H, Zhao F et al. A 50-112-Gb/s PAM-4 transmitter with a fractional-spaced FFE in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 55, 1864-1876(2020).

    [22] Depaoli E, Zhang H Y, Mazzini M et al. A 64 Gb/s low-power transceiver for short-reach PAM-4 electrical links in 28-nm FDSOI CMOS[J]. IEEE Journal of Solid-State Circuits, 54, 6-17(2019).

    [23] Pisati M, de Bernardinis F, Pascale P et al. A 243-mW 1.25-56-Gb/s continuous range PAM-4 42.5-dB IL ADC/DAC-based transceiver in 7-nm FinFET[J]. IEEE Journal of Solid-State Circuits, 55, 6-18(2020).

    [24] Roshan-Zamir A, Elhadidy O, Yang H W et al. A reconfigurable 16/32 Gb/s dual-mode NRZ/PAM4 SerDes in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 52, 2430-2447(2017).

    [25] Bao Y, Li Z H, Li J P et al. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion[J]. Optics Express, 21, 7354-7361(2013).

    Zhiqiang Chen, Linghao Cheng, Yuan Bao, Dawei Liu, Jianlin Fan, Zhitao Chen. Architecture of Reconfigurable Transmitter Integrated Circuits for Four-Level Pulse Amplitude Modulation Optical Interconnection System[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2106004
    Download Citation