• Journal of Semiconductors
  • Vol. 40, Issue 8, 081505 (2019)
Guoqiang Zhao1、2, Zheng Deng1、2, and Changqing Jin1、2
Author Affiliations
  • 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physics, University of Chinese Academy of Sciences, Beijing, 100190, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081505 Cite this Article
    Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. Journal of Semiconductors, 2019, 40(8): 081505 Copy Citation Text show less
    References

    [1]

    [2] C A Mack. Fifty years of Moore's law. IEEE Trans Semicond Manufac, 24, 202(2011).

    [3] I Žutić, J Fabian, Sarma S Das. Spintronics fundamentals and applications. Rev Mod Phys, 76, 323(2004).

    [4] I Žutić, T Zhou. Tailoring magnetism in semiconductors. Sci Chin Phys, Mechan Astronom, 61, 067031(2018).

    [5] T R McGuire, e B E Argyle, r M W Shafer et al. Magnetic properties of some divalent europium compounds. J Appl Phys, 34, 1345(1963).

    [6] S B Berger, h H L Pinch. Ferromagnetic resonance of single crystals of CdCr2S4 and CdCr2Se4. J Appl Phys, 38, 949(1967).

    [7] J K Furdyna. Diluted magnetic semiconductors. J Appl Phys, 64, R29(1988).

    [8] T Story, a R R Galazka, l R B Frankel et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 56, 777(1986).

    [9] N Samarth, a J K Furdyna. Diluted magnetic semiconductors. Proc IEEE, 78, 990(1990).

    [10] H Munekata, H Ohno, S von Molnar. Diluted magnetic III–V semiconductors. Phys Rev Lett, 63, 1849(1989).

    [11] H Ohno, n A Shen, a F Matsukura et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 69, 363(1996).

    [12] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [13] H Ohno, H Munekata, y T Penney et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys Rev Lett, 68, 2664(1992).

    [14] M Wang, n R P Campion, h A W Rushforth et al. Achieving high Curie temperature in (Ga,Mn)As. Appl Phys Lett, 93, 132103(2008).

    [15] L Chen, n S Yan, u P F Xu et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 95, 182505(2009).

    [16] L Chen, g X Yang, g F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [17] T Dietl. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 9, 965(2010).

    [18] A Bonanni, l T Dietl. A story of high-temperature ferromagnetism in semiconductors. Chem Soc Rev, 39, 528(2010).

    [19] Z Deng, n C Q Jin, u Q Q Liu et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2, 422(2011).

    [20] K Zhao, g Z Deng, g X C Wang et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 4, 1442(2013).

    [21] Z Deng, o K Zhao, n C Jin. New types of diluted magnetic semiconductors with decoupled charge and spin doping. Physics, 42, 682(2013).

    [22] K Zhao, B Chen, o G Zhao et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 59, 2524(2014).

    [23] R Bacewicz, k T F Ciszek. Preparation and characterization of some AIBIICV type semiconductors. Appl Phys Lett, 52, 1150(1988).

    [24] K Kuriyama, a F Nakamura. Electrical transport properties and crystal structure of LiZnAs. Phys Rev B, 36, 4439(1987).

    [25] K Kuriyama, T Kato, a K Kawada. Optical band gap of the filled tetrahedral semiconductor LiZnAs. Phys Rev B, 49, 11452(1994).

    [26] X C Wang, u Q Q Liu, v Y X Lv et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 148, 538(2008).

    [27] J Masek, y J Kudrnovsky, F Maca et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 98, 067202(2007).

    [28] Z Deng, o K Zhao, u B Gu et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 88, 081203(2013).

    [29] Y J Uemura, i T Yamazaki, n D R Harshman et al. Muon-spin relaxation in AuFe and CuMn spin glasses. Phys Rev B, 31, 546(1985).

    [30] S R Dunsiger, o J P Carlo, o T Goko et al. Spatially homogeneous ferromagnetism of (Ga,Mn)As. Nat Mater, 9, 299(2010).

    [31] Y J Uemura, T Goko, I M Gat-Malureanu et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1–xCax)RuO3. Nat Phys, 3, 29(2006).

    [32] F L Ning, n H Man, g X Gong et al. Suppression of Tc by overdoped Li in the diluted ferromagnetic semiconductor Li1+y(Zn1−xMnx)P: A μSR investigation. Phys Rev B, 90, 085123(2014).

    [33] B Chen, g Z Deng, i W Li et al. Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv, 6, 115014(2016).

    [34] S L Guo, o Y Zhao, H Y Man et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites. J Phys Condens Matter, 28, 366001(2016).

    [35] F Sun, u C Xu, u S Yu et al. Synchrotron X-ray diffraction studies on the new generation ferromagnetic semiconductor Li(Zn,Mn)As under high pressure. Chin Phys Lett, 34, 067501(2017).

    [36] W Han, n B J Chen, u B Gu et al. Li(Cd,Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 9, 7490(2019).

    [37] F Matsukura, i M Sawicki, l T Dietl et al. Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E, 21, 1032(2004).

    [38] A H MacDonald, r P Schiffer, h N Samarth. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 4, 195(2005).

    [39] T Sasaki, a S Sonoda, o Y Yamamoto et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J Appl Phys, 91, 7911(2002).

    [40] K Zhao, n B J Chen, g Z Deng et al. (Ca,Na)(Zn,Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 116, 163906(2014).

    [41] B Chen, g Z Deng, i W Li et al. (Sr1–xNax)(Cd1–xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 120, 083902(2016).

    [42] B J Chen, o K Zhao, Z Deng et al. (Sr,Na)(Zn,Mn)2As2: A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure. Phys Rev B, 90, 155202(2014).

    [43] T Dietl. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 77, 031005(2008).

    [44] Y Kamihara, e T Watanabe, o M Hirano et al. Iron-based layered superconductor La(O1–xFx) FeAs (x = 0.05−0.12) with TC = 26 K. JACS, 130, 3296(2008).

    [45] W Han, o K Zhao, g X Wang et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to " 1111” type iron pnictide superconductors. Sci Chin Phys, Mechan Astronom, 56, 2026(2013).

    [46] B J Chen, g Z Deng, g X C Wang et al. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors. Chin Phys B, 25, 077503(2016).

    [47] B Chen, g Z Deng, W Li et al. New fluoride-arsenide diluted magneticsemiconductor (Ba,K)F(Zn,Mn)As with independent spinand charge doping. Sci Rep, 6, 36578(2016).

    [48]

    [49] T Jungwirth, J Wunderlich, Novák V V et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 86, 855(2014).

    [50] H Ohno, a D Chiba, a F Matsukura et al. Electric-field control of ferromagnetism. Nature, 408, 944(2000).

    [51] T Dietl, o H Ohno, a F Matsukura et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019(2000).

    [52] T Dietl, o H Ohno, F Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 63, 195205(2001).

    [53] T Jungwirth, a J Sinova, k J Masek et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 78, 809(2006).

    [54] K Sato, L Bergqvist, J Kudrnovský et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 82, 1633(2010).

    [55] T Dietl, o K Sato, a T Fukushima et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Modern Phys, 87, 1311(2015).

    [56] T Dietl, o H Ohno. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 86, 187(2014).

    [57] D J Keavney, u D Wu, d J W Freeland et al. Element resolved spin configuration in ferromagnetic manganese-doped gallium arsenide. Phys Rev Lett, 91, 187203(2003).

    [58] B Beschoten, l P Crowell, h I Malajovich et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in (Ga1−xMnx)As. Phys Rev Lett, 83, 3073(1999).

    [59] J K Glasbrenner, I Žutić, I I Mazin. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 90, 140403(2014).

    [60] H Suzuki, o K Zhao, a G Shibata et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1−xKx(Zn1−yMny)2As2. Phys Rev B, 91, 140401(2015).

    [61] Y Takeda, i M Kobayashi, e T Okane et al. Nature of magnetic coupling between Mn ions in As-grown Ga1–xMnxAs studied by X-ray magnetic circular dichroism. Phys Rev Lett, 100, 247202(2008).

    [62] J I Hwang, i M Kobayashi, g G S Song et al. X-ray magnetic circular dichroism characterization of GaN∕Ga1−xMnxN digital ferromagnetic heterostructure. Appl Phys Lett, 91(2007).

    [63] S Andrieu, y E Foy, r H Fischer et al. Effect of O contamination on magnetic properties of ultrathin Mn films grown on (001) Fe. Phys Rev B, 58, 8210(1998).

    [64] H Suzuki, a T Yoshida, a S Ideta et al. Absence of superconductivity in the hole-doped Fe pnictide Ba(Fe1−xMnx)2As2: Photoemission and x-ray absorption spectroscopy studies. Phys Rev B, 88, 100501(2013).

    [65] T Burnus, u Z Hu, h H H Hsieh et al. Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy. Phys Rev B, 77, 125124(2008).

    [66] H Suzuki, o G Q Zhao, o K Zhao et al. Fermi surfaces and p−d hybridization in the diluted magnetic semiconductor Ba1−xKx(Zn1−yMny)2As2 studied by soft x-ray angle-resolved photoemission spectroscopy. Phys Rev B, 92, 235120(2015).

    [67] G Q Zhao, n C Q Lin, g Z Deng et al. Single crystal growth and spin polarization measurements of diluted magnetic semiconductor (BaK)(ZnMn)2As2. Sci Rep, 7, 14473(2017).

    [68] G Q Zhao, i Z Li, n F Sun et al. Effects of high pressure on the ferromagnetism and in-plane electrical transport of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 single crystal. J Phys Condens Matter, 30, 254001(2018).

    [69] N Nagaosa, a J Sinova, a S Onoda et al. Anomalous Hall effect. Rev Mod Phys, 82, 1539(2010).

    [70] J G Braden, r J S Parker, g P Xiong et al. Direct measurement of the spin polarization of the magnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 91, 056602(2003).

    [71] R P Panguluri, y B Nadgorny, z T Wojtowicz et al. Inelastic scattering and spin polarization in dilute magnetic semiconductor (Ga,Mn)Sb. Appl Phys Lett, 91, 252502(2007).

    [72] M Bowen, M Bibes, A Barthélémy et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 82, 233(2003).

    [73] J M D Coey, o S Sanvito. Magnetic semiconductors and half-metals. J Phys D, 37, 988(2004).

    [74] C Ren, c J Trbovic, r R L Kallaher et al. Measurement of the spin polarization of the magnetic semiconductor EuS with zero-field and Zeeman-split Andreev reflection spectroscopy. Phys Rev B, 75, 205208(2007).

    [75] T Guan, n C Lin, g C Yang et al. Evidence for half-metallicity in n-type HgCr2Se4. Phys Rev Lett, 115, 087002(2015).

    [76] G E Blonder, m M Tinkham, k T M Klapwijk. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys Rev B, 25, 4515(1982).

    [77] G Gu, o G Zhao, n C Lin et al. Asperomagnetic order in diluted magnetic semiconductor (Ba,Na)(Zn,Mn)2As2. Appl Phys Lett, 112, 032402(2018).

    [78] Y Singh, n M A Green, g Q Huang et al. Magnetic order inBaMn2As2 from neutron diffraction measurements. Phys Rev B, 80, 100403(2009).

    [79] M Rotter, l M Tegel, D Johrendt. Superconductivity at 38 K in the iron arsenide (Ba1–xKx)Fe2As2. Phys Rev Lett, 101, 107006(2008).

    [80] S Guo, n H Man, g K Wang et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 99, 155201(2019).

    [81] A Hirohata, a H Sukegawa, H Yanagihara et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magnet, 51, 0800511(2015).

    [82] A Beleanu, s J Kiss, r G Kreiner et al. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys Rev B, 88, 184429(2013).

    [83] Y Peng, u S Yu, o G Q Zhao et al. Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Chin Phys B, 28, 057501(2019).

    [84] B A Frandsen, g Z Gong, n M W Terban et al. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2. Phys Rev B, 94, 094102(2016).

    [85] F Sun, i N N Li, n B J Chen et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2 with independent spin and charge doping. Phys Rev B, 93, 224403(2016).

    [86] F Sun, o G Q Zhao, a C A Escanhoela et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)2As2. Phys Rev B, 95, 094412(2017).

    [87] M A Surmach, B J Chen et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1–xKx)(Zn1–yMny)2As2. Phys Rev B, 97, 104418(2018).

    [88] R Wang, g Z X Huang, o G Q Zhao et al. Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1−xKx- (Zn1−yMny)2As2. AIP Adv, 7, 045017(2017).

    [89] H C Yang, u K Liu, u Z Y Lu. Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1–xKx)(Zn1–y Mny)2P2. Chin Phys B, 27, 067103(2018).

    [90] B Gu, a S Maekawa. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 94, 155202(2016).

    [91] H Man, o S Guo, i Y Sui et al. Ba(Zn(1–2x)MnxCux)2As2: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 5, 15507(2015).

    [92] S Guo, n H Man, g X Gong et al. (Ba1–xKx)(Cu2–xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magnet Magnet Mater, 400, 295(2016).

    [93] X Yang, n Q Chen, Y Li et al. Sr0.9K0.1Zn1.8Mn0.2As2: A ferromagnetic semiconductor with colossal magnetoresistance. EPL, 107, 67007(2014).

    [94] J T Yang, o S J Luo, g Y C Xiong. Magnetic mechanism investigations on K and Mn co-doped diluted magnetic semiconductor (Sr,K)(Zn,Mn)2As2. J Magnet Magnet Mater, 407, 334(2016).

    [95] X Yang, i Y Li, g P Zhang et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 114, 223905(2013).

    [96] N Emery, n E J Wildman, e J M S Skakle et al. Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materials LMnAsO (L = La, Nd). Phys Rev B, 83, 144429(2011).

    [97] C Ding, o S Guo, o Y Zhao et al. The synthesis and characterization of 1111 type diluted ferromagnetic semiconductor (La1–xCax)(Zn1–xMnx)AsO. J Phys Condens Matter, 28, 026003(2016).

    [98] C Jin, g X Wang, u Q Liu et al. New quantum matters: Build up versus high pressure tuning. Sci Chin Phy, Mechan Astronom, 56, 2337(2013).

    [99] C Ding, n H Man, n C Qin et al. (La1–xBax)(Zn1–xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 88, 041102(2013).

    [100] X Li, u X Wu, g J Yang. Control of spin in a La(Mn,Zn)AsO alloy by carrier doping. J Mater Chem C, 1, 7197(2013).

    [101] X Yang, i Y Li, n C Shen et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. Appl Phys Lett, 103, 022410(2013).

    [102] J Lu, n H Man, g C Ding et al. The synthesis and characterization of 1111-type diluted magnetic semiconductors (La1–xSrx)(Zn1–xTMx)AsO (TM = Mn, Fe, Co). EPL, 103, 67011(2013).

    [103] Y Zhao, g K Wang, o S Guo et al. La(Zn 1–2xMnxCux)SbO: A new diluted magnetic semiconductor isostructural to 1111-type iron pnictide superconductors. EPL, 120, 47005(2017).

    [104] S Guo, o Y Zhao, g X Gong et al. La(Zn1−2xMnxCux)AsO: A 1111-type diluted magnetic semiconductor with manganese and copper codoping at Zn sites. EPL, 114, 57008(2016).

    [105] L Fu, u Y Gu, o S Guo et al. Ferromagnetism in fluoride-antimonide SrF(Zn1–2xMnxCux)Sb with a quasi two dimensional structure. J Magnet Magnet Mater, 483, 95(2019).

    Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. Journal of Semiconductors, 2019, 40(8): 081505
    Download Citation