• Journal of Semiconductors
  • Vol. 42, Issue 4, 041308 (2021)
Chanchan Luo1、2、5, Ruiying Zhang1、2、5, Bocang Qiu3, and Wei Wang4
Author Affiliations
  • 1School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • 2Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 3Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
  • 4The Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
  • show less
    DOI: 10.1088/1674-4926/42/4/041308 Cite this Article
    Chanchan Luo, Ruiying Zhang, Bocang Qiu, Wei Wang. Waveguide external cavity narrow linewidth semiconductor lasers[J]. Journal of Semiconductors, 2021, 42(4): 041308 Copy Citation Text show less
    References

    [1] X Bao, W Li, Z Qin et al. OTDR and OFDR for distributed multi-parameter sensing. Proc SPIE, 9062(2014).

    [2]

    [3] X Sun, J B Abshire. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. Opt Express, 20, 21291(2012).

    [4]

    [5] J R Demers, R T Logan, E R Brown. An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB. Microw Photonics, 92(2007).

    [6]

    [7]

    [8] L Atzori, A Iera, G Morabito. The internet of things: A survey. Comput Netw, 54, 2787(2010).

    [9] D Marpaung, M Burla, J Capmany. New opportunities for integrated microwave photonics. IEEE Photonics Technol Lett, 30, 1813(2018).

    [10] N Dostart, B Zhang, A Khilo et al. Serpentine optical phased arrays for scalable integrated photonic LIDAR beam steering. Optica, 7, 726(2020).

    [11]

    [12] T Nagatsuma, H Ito, K Iwatsuki. Generation of low-phase noise and frequency-tunable millimeter-/terahertz-waves using optical heterodyning techniques with uni-traveling carrier photodiodes. 2006 European Microwave Conference, 1103(2006).

    [13] V M Gelikonov. Measurement of nanoangström oscillatory displacements by a gas laser with a small natural linewidth. Radiophys Quantum Electron, 41, 998(1998).

    [14] S Mo, X Huang, S Xu et al. 600-Hz linewidth short-linear-cavity fiber laser. Opt Lett, 39, 5818(2014).

    [15] D Lo, S K Lam, C Ye et al. Narrow linewidth operation of solid state dye laser based on sol-gel silica. Opt Commun, 156, 316(1998).

    [16] C K Laue, R Knappe, K J Boller et al. Wavelength tuning and spectral properties of distributed feedback diode lasers with a short external optical cavity. Appl Opt, 40, 3051(2001).

    [17] P Signoret, M Myara, J P Tourrenc et al. Bragg section effects on linewidth and lineshape in 1.55-μm DBR tunable laser diodes. IEEE Photonics Technol Lett, 16, 1429(2004).

    [18] C H Henry. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 18, 259(1982).

    [19] K Y Liou, K Duttan, A Burrusc. Linewidth narrow distributed feedback injection lasers with long cavity length and detuned Bragg wavelength. Appl Phys Lett, 50, 489(1987).

    [20] J Ma, L R Wang, Y T Zhao et al. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Appl Phys Lett, 91, 161101(2007).

    [21] E Patzak, A Sugimura, S Saito et al. Semiconductor laser linewidth in optical feedback configurations. Electron Lett, 19, 1026(2007).

    [22] M R Olcay, J A Pasqual, J A Lisboa et al. Tuning of a narrow linewidth pulsed dye laser with a Fabry-Perot and diffraction grating over a large wavelength range. Appl Opt, 24, 3146(1985).

    [23] W Liang, V S Ilchenko, A A Savchenkov et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett, 35, 2822(2010).

    [24]

    [25] M A Tran, D Huang, J Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).

    [26] T Komljenovic, J E Bowers. Monolithically integrated high-Q rings for narrow linewidth widely tunable lasers. IEEE J Quantum Electron, 51, 1(2015).

    [27]

    [28] H Ou. Different index contrast silica-on-silicon waveguides by PECVD. Electron Lett, 39, 212(2003).

    [29] W Bogaerts, R Baets, P Dumon et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol, 23, 401(2005).

    [30] X Ji, F A S Barbosa, S P Roberts et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619(2017).

    [31] M Tran, D Huang, T Komljenovic et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 8, 1139(2018).

    [32] T Takeuchi, M Takahashi, K Suzuki et al. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans Electron, 92, 198(2009).

    [33] A H Atabaki, E S Hosseini, A A Eftekhar et al. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt Express, 18, 18312(2010).

    [34] G Poberaj, H Hu et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon Rev, 6, 488(2012).

    [35] M Belt, M L Davenport, J E Bowers et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 4, 532(2017).

    [36] K J Boller, A V Rees, Y Fan et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics, 7, 4(2019).

    [37] B Liu, A Shakouri, J E Bowers. Passive microring-resonator-coupled lasers. Appl Phys Lett, 79, 3561(2001).

    [38] J F Liu, X C Sun, R Camacho-Aguilera et al. Ge-on-Si laser operating at room temperature. Opt Lett, 35, 679(2010).

    [39] G T Reed, A P Knights, M Liao et al. Integrating III-V quantum dot lasers on silicon substrates for silicon photonics. SPIE Opto, 101081A(2017).

    [40]

    [41] G Roelkens, L Liu, D Liang et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 4, 751(2010).

    [42] T Tsuchizawa, K Yamada, H Fukuda et al. Microphotonics devices based on silicon microfabrication technology. IEEE J Sel Top Quantum Electron, 11, 232(2005).

    [43]

    [44] K Suzuki, J A Kubby, G T Reed et al. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters. Proc SPIE, 7943, 79431G(2011).

    [45] K Nemoto, T Kita, H Yamada. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators. Appl Phys Express, 5, 2701(2012).

    [46] R M Oldenbeuving, E J Klein, H L Offerhaus et al. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys Lett, 10, 015804(2013).

    [47]

    [48] T Kita, K Nemoto, H Yamada. Silicon photonic wavelength-tunable laser diode with asymmetric Mach-Zehnder interferometer. IEEE J Sel Top Quantum Electron, 20, 344(2014).

    [49] T Kita, K Nemoto, H Yamada. Long external cavity Si photonic wavelength tunable laser diode. Jpn J Appl Phys, 53, 04E(2014).

    [50]

    [51]

    [52] N Kobayashi, K Sato, M Namiwaka et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 33, 1241(2015).

    [53] R Tang, T Kita, H Yamada. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer. Opt Lett, 40, 1504(2015).

    [54]

    [55]

    [56] T Kita, R Tang, H Yamada. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system. IEEE J Sel Top Quantum Electron, 22, 23(2016).

    [57] S Brian, J Xingchen, D Avik et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 42, 4541(2017).

    [58]

    [59] Y Lin, C Browning, R B Timens et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J, 10, 1(2018).

    [60] Y Li, Y Zhang, H Chen et al. Tunable self-injected fabry-perot laser diode coupled to an external high-Q Si3N4 /SiO2 microring resonator. J Lightwave Technol, 36, 3269(2018).

    [61] Y Zhu, L Zhu. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration. Opt Express, 27, 2354(2019).

    [62] C Xiang, P A Morton, J E Bowers. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt Lett, 44, 3825(2019).

    [63] Y Y Zhu, S W Zeng, L Zhu. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res, 8, 03000375(2020).

    [64] Y W Fan, A van Rees, P J Van der Slot et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt Express, 28, 21713(2020).

    [65] Y Hu, W Cao, X S Tang et al. High power, high SMSR and wide tuning range silicon micro-ring tunable laser. Opt Express, 25, 8029(2017).

    [66]

    [67] H Park, A W Fang, S Kodama et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt Express, 13, 9460(2005).

    [68]

    [69] S Keyvaninia, G Roelkens, D Van Thourhout et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express, 21, 3784(2013).

    [70] J C Hulme, J K Doylend, J E Bowers. Widely tunable Vernier ring laser on hybrid silicon. Opt Express, 21, 19718(2013).

    [71] T Komljenovic, S Srinivasan, E Norberg et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 21, 214(2015).

    [72]

    [73]

    [74]

    [75] D Huang, M A Tran, J Guo et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745(2019).

    [76] M A Tran, D Huang, J Guo et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J Sel Top Quantum Electron, 26, 1(2019).

    [77] K Aoyama, S Kobayashi, M Wada et al. Compact narrow-linewidth optical negative feedback laser with Si optical filter. Appl Phys Express, 11, 112703(2018).

    [78] G D’Agostino et al. Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt Express, 23, 25143(2015).

    [79] S Andreou, K A Williams, E A J M Bente. Monolithically integrated InP-based DBR lasers with an intra-cavity ring resonator. Opt Express, 27, 26281(2019).

    [80] J Wang, R Y Zhan, B C Qiu et al. Design of high-Q compact passive ring resonators via incorporating a loss-compensated structure for high performance angular velocity sensing in monolithic integrated-optical-gyroscopes. IEEE Sens J, 17, 84(2017).

    [81] C C Luo, J Wang, B C Qiu et al. Gain spectral narrowing of semiconductor laser based on dual-core vertical coupler structure. Opt Commun, 474, 126166(2020).

    [82]

    [83]

    Chanchan Luo, Ruiying Zhang, Bocang Qiu, Wei Wang. Waveguide external cavity narrow linewidth semiconductor lasers[J]. Journal of Semiconductors, 2021, 42(4): 041308
    Download Citation