• Journal of Semiconductors
  • Vol. 41, Issue 8, 081003 (2020)
Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, and Yeliang Wang
Author Affiliations
  • MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1088/1674-4926/41/8/081003 Cite this Article
    Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, Yeliang Wang. Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. Journal of Semiconductors, 2020, 41(8): 081003 Copy Citation Text show less
    References

    [1] G Fiori, F Bonaccorso, G Iannaccone et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 9, 768(2014).

    [2] K S Novoselov, A Mishchenko, A Carvalho et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [3] G Li, Y Y Zhang, H Guo et al. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem Soc Rev, 47, 6073(2018).

    [4] M Gibertini, M Koperski, A F Morpurgo et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 14, 408(2019).

    [5] J B Cheng, C L Wang, X M Zou et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv Opt Mater, 7, 1800441(2019).

    [6] I Epstein, A J Chaves, D A Rhodes et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater, 7, 035031(2020).

    [7] J Kou, E P Nguyen, A Merkoçi et al. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater, 7, 032001(2020).

    [8] X Lin, J C Lu, Y Shao et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat Mater, 16, 717(2017).

    [9] X H Niu, Y W Yi, L J Meng et al. Two-dimensional phosphorene, arsenene, and antimonene quantum dots: Anomalous size-dependent behaviors of optical properties. J Phys Chem C, 123, 25775(2019).

    [10] Y Zhang, T R Chang, B Zhou et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 9, 111(2014).

    [11] S Das Sarma, S Adam, E H Hwang et al. Electronic transport in two-dimensional graphene. Rev Mod Phys, 83, 407(2011).

    [12] C C Liu, W X Feng, Y G Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 107, 076802(2011).

    [13] Z H Wu, J H Hao. Electrical transport properties in group-V elemental ultrathin 2D layers. npj 2D Mater Appl, 4, 4(2020).

    [14] S L Zhang, S Y Guo, Z F Chen et al. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem Soc Rev, 47, 982(2018).

    [15] G Z Qin, Z Z Qin. Negative Poisson's ratio in two-dimensional honeycomb structures. npj Comput Mater, 6, 51(2020).

    [16] Y Q Ma, C F Shen, A Zhang et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano, 11, 7126(2017).

    [17] R X Fei, L Yang. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 14, 2884(2014).

    [18] Q Liu, X W Zhang, L Abdalla et al. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett, 15, 1222(2015).

    [19] J S Qiao, X H Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [20] L T T Phuong, T C Phong, M Yarmohammadi. Spin-splitting effects on the interband optical conductivity and activity of phosphorene. Sci Rep, 10, 9201(2020).

    [21] S L Zhang, Z Yan, Y F Li et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 54, 3112(2015).

    [22] M Wada, S Murakami, F Freimuth et al. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys Rev B, 83, 121310(2011).

    [23] S Murakami. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett, 97, 236805(2006).

    [24] A Brown, S Rundqvist. Refinement of the crystal structure of black phosphorus. Acta Crystallogr, 19, 684(1965).

    [25] H Thurn, H Kerbs. Crystal structure of violet phosphorus. Angew Chem Int Ed, 5, 1047(1966).

    [26] R Hultgren, N S Gingrich, B E Warren. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys, 3, 351(1935).

    [27] S Appalakondaiah, G Vaitheeswaran, S Lebègue et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys Rev B, 86, 035105(2012).

    [28] S Fukuoka, T Taen, T Osada. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J Phys Soc Jpn, 84, 121004(2015).

    [29] L B Liang, J Wang, W Z Lin et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett, 14, 6400(2014).

    [30] J S Kim, P J Jeon, J Lee et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching. Nano Lett, 15, 5778(2015).

    [31] M Buscema, D J Groenendijk, S I Blanter et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 14, 3347(2014).

    [32] L K Li, Y J Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [33] A R Baboukani, I Khakpour, V Drozd et al. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application. J Mater Chem, 7, 25548(2019).

    [34] H Liu, A T Neal, Z Zhu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [35] J Xie, M Si, D Yang et al. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys, 116, 073704(2014).

    [36] Y Aierken, D Cakir, C Sevik et al. Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys Rev B, 92, 081408(2015).

    [37] B Ghosh, S Nahas, S Bhowmick et al. Electric field induced gap modification in ultrathin blue phosphorus. Phys Rev B, 91, 115433(2015).

    [38] Z Zhu, D Tománek. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 112, 176802(2014).

    [39] J L Zhang, S T Zhao, C Han et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 16, 4903(2016).

    [40] C Wang, Y Z You, J H Choi. First-principles study of defects in blue phosphorene. Mater Res Express, 7, 015005(2019).

    [41] Y P Wang, C W Zhang, W X Ji et al. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J Phys D, 49, 055305(2016).

    [42] R Gusmão, Z Sofer, D Bouša et al. Innentitelbild: pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 129, 14510(2017).

    [43] C Kamal, M Ezawa. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 91, 085423(2015).

    [44] G Pizzi, M Gibertini, E Dib et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 7, 12585(2016).

    [45] H Tsai, S Wang, C Hsiao et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater, 28, 425(2016).

    [46] P Ares, F Aguilar-Galindo, D Rodríguez-San-miguel et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 28, 6332(2016).

    [47] J P Ji, X F Song, J Z Liu et al. Two-dimensional antimonene singlecrystals grown by van der Waals epitaxy. Nat Commun, 7, 13352(2016).

    [48] X Wu, Y Shao, H Liu et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv Mater, 29, 1605407(2017).

    [49] S Zhu, Y Shao, E Wang et al. Evidence of topological edge states in buckled antimonene monolayers. Nano Lett, 19, 6323(2019).

    [50] Y Shao, Z L Liu, C Cheng et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett, 18, 2133(2018).

    [51] A D Zhao, B Wang. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater, 8, 030701(2020).

    [52] Z Liu, C X Liu, Y S Wu et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys Rev Lett, 107, 136805(2011).

    [53] F Reis, G Li, L Dudy et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 357, 287(2017).

    [54] R Stühler, F Reis, T Müller et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat Phys, 16, 47(2020).

    Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, Yeliang Wang. Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. Journal of Semiconductors, 2020, 41(8): 081003
    Download Citation