• Photonics Research
  • Vol. 11, Issue 4, 610 (2023)
Xiaoxuan Luo1, Yin Cai1,2, Xin Yue1, Wei Lin1..., Jingping Zhu1, Yanpeng Zhang1 and Feng Li1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 2e-mail: caiyin@xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.478364 Cite this Article Set citation alerts
    Xiaoxuan Luo, Yin Cai, Xin Yue, Wei Lin, Jingping Zhu, Yanpeng Zhang, Feng Li, "Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling," Photonics Res. 11, 610 (2023) Copy Citation Text show less
    References

    [1] U. K. Roessler, A. N. Bogdanov, C. Pfleiderer. Spontaneous skyrmion ground states in magnetic metals. Nature, 442, 797-801(2006).

    [2] A. Fert, N. Reyren, V. Cros. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2, 17031(2017).

    [3] N. Manton, P. Sutcliffe. Topological Solitons(2004).

    [4] Y. Shen, Q. Zhang, P. Shi, L. Du, A. V. Zayats, X. Yuan. Topological quasiparticles of light: optical skyrmions and beyond. arXiv(2022).

    [5] L. Du, A. Yang, X. Yuan, A. V. Zayats. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [6] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [7] Z.-L. Deng, T. Shi, A. Krasnok, X. Li, A. Alù. Observation of topologically robust localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2022).

    [8] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett, J. B. Götte. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [9] Y. Shen, Y. Hou, N. Papasimakis, N. I. Zheludev. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [10] Z. Lai, S. Lin, Y. Shi, M. Li, G. Liu, B. Tian, Y. Chen, X. Zhou. Experimental demonstration of weak chirality enhancement by hybrid perovskite nanocrystals using photonic spin Hall effect. Nanophotonics, 11, 4245-4251(2022).

    [11] X. Zhou, X. Lin, Z. Xiao, T. Low, A. Alù, B. Zhang, H. Sun. Controlling photonic spin Hall effect via exceptional points. Phys. Rev. B, 100, 115429(2019).

    [12] X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, S. Wen. Photonic spin Hall effect in topological insulators. Phys. Rev. A, 88, 053840(2013).

    [13] G. Nardin, R. Cerna, T. K. Paraïso, B. Pietka, Y. Léger, O. el Daif, F. Morier-Genoud, B. Deveaud-Plédran. Probability density tomography of microcavity polaritons confined in cylindrical traps of various sizes. Superlattices Microstruct., 47, 207-212(2010).

    [14] M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, A. M. Fox. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett., 14, 6997-7002(2014).

    [15] L. Huang, L. Xu, M. Rahmani, D. N. Neshev, A. E. Miroshnichenko. Pushing the limit of high-Q mode of a single dielectric nanocavity. Adv. Photon., 3, 016004(2021).

    [16] J. Sun, H. Hu, D. Pan, S. Zhang, H. Xu. Selectively depopulating valley-polarized excitons in monolayer MoS2 by local chirality in single plasmonic nanocavity. Nano Lett., 20, 4953-4959(2020).

    [17] W. Jiang, H. Hu, Q. Deng, S. Zhang, H. Xu. Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics, 9, 3347-3356(2020).

    [18] X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, W. Zhang. Terahertz surface plasmonic waves: a review. Adv. Photon., 2, 014001(2020).

    [19] Y. Huang, Y. Shen, G. Veronis. Topological edge states at singular points in non-Hermitian plasmonic systems. Photon. Res., 10, 747-757(2022).

    [20] A. I. Barreda, M. Zapata-Herrera, I. M. Palstra, L. Mercadé, J. Aizpurua, A. F. Koenderink, A. Martínez. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration. Photon. Res., 9, 2398-2419(2021).

    [21] S. Ghosh, R. Su, J. Zhao, A. Fieramosca, J. Wu, T. Li, Q. Zhang, F. Li, Z. Chen, T. Liew. Microcavity exciton polaritons at room temperature. Photon. Insights, 1, R04(2022).

    [22] H. Flayac, D. D. Solnyshkov, I. A. Shelykh, G. Malpuech. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect. Phys. Rev. Lett., 110, 016404(2013).

    [23] A. Kavokin, G. Malpuech, M. Glazov. Optical spin Hall effect. Phys. Rev. Lett., 95, 136601(2005).

    [24] C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, A. Bramati. Observation of the optical spin Hall effect. Nat. Phys., 3, 628-631(2007).

    [25] R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese, T. Boulier, D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech. Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nat. Phys., 8, 724-728(2012).

    [26] K. Rechcińska, M. Król, R. Mazur, P. Morawiak, R. Mirek, K. Łempicka, W. Bardyszewski, M. Matuszewski, P. Kula, W. Piecek. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science, 366, 727-730(2019).

    [27] C. E. Whittaker, T. Dowling, A. V. Nalitov, A. V. Yulin, B. Royall, E. Clarke, M. S. Skolnick, I. A. Shelykh, D. N. Krizhanovskii. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photonics, 15, 193-196(2021).

    [28] J. Ren, Q. Liao, F. Li, Y. Li, O. Bleu, G. Malpuech, J. Yao, H. Fu, D. Solnyshkov. Nontrivial band geometry in an optically active system. Nat. Commun., 12, 689(2021).

    [29] A. Gianfrate, O. Bleu, L. Dominici, V. Ardizzone, M. de Giorgi, D. Ballarini, G. Lerario, K. W. West, L. N. Pfeiffer, D. D. Solnyshkov. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature, 578, 381-385(2020).

    [30] T. Long, X. Ma, J. Ren, F. Li, Q. Liao, S. Schumacher, G. Malpuech, D. Solnyshkov, H. Fu. Helical polariton lasing from topological valleys in an organic crystalline microcavity. Adv. Sci., 9, 2203588(2022).

    [31] L. Polimeno, G. Lerario, M. de Giorgi, L. de Marco, L. Dominici, F. Todisco, A. Coriolano, V. Ardizzone, M. Pugliese, C. T. Prontera. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol., 16, 1349-1354(2021).

    [32] P. Cilibrizzi, H. Sigurdsson, T. C. H. Liew, H. Ohadi, A. Askitopoulos, S. Brodbeck, C. Schneider, I. A. Shelykh, S. Höfling, J. Ruostekoski. Half-skyrmion spin textures in polariton microcavities. Phys. Rev. B, 94, 045315(2016).

    [33] S. Dufferwiel, F. Fras, A. Trichet, P. M. Walker, F. Li, L. Giriunas, M. N. Makhonin, L. R. Wilson, J. M. Smith, E. Clarke. Strong exciton-photon coupling in open semiconductor microcavities. Appl. Phys. Lett., 104, 192107(2014).

    [34] S. Dufferwiel, F. Li, E. Cancellieri, L. Giriunas, A. A. P. Trichet, D. M. Whittaker, P. M. Walker, F. Fras, E. Clarke, J. M. Smith. Spin textures of exciton-polariton condensates in a tunable microcavity with strong spin-orbit interaction. Phys. Rev. Lett., 115, 246401(2015).

    [35] V. G. Sala, D. D. Solnyshkov, I. Carusotto, T. Jacqmin, A. Lemaître, H. Terças, A. Nalitov, M. Abbarchi, E. Galopin, I. Sagnes. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X, 5, 011034(2015).

    [36] F. Li, E. Cancellieri, G. Buonaiuto, M. S. Skolnick, D. N. Krizhanovskii, D. M. Whittaker. Full Stark control of polariton states on a spin-orbit hypersphere. Phys. Rev. B, 94, 201301(2016).

    [37] G. Milione, H. I. Sztul, D. A. Nolan, R. R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [38] D. H. Foster, J. U. Nöckel. Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities. Opt. Lett., 29, 2788-2790(2004).

    [39] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [40] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [41] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [42] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [43] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 5, 4034(2014).

    [44] S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, R. Schmidt-Grund. Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity. Phys. Rev. Lett., 123, 227401(2019).

    [45] Q. Liao, C. Leblanc, J. Ren, F. Li, Y. Li, D. Solnyshkov, G. Malpuech, J. Yao, H. Fu. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett., 127, 107402(2021).

    [46] D. Solnyshkov, G. Malpuech. Chirality in photonic systems. C. R. Phys., 17, 920-933(2016).

    [47] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch. Polariton laser using single micropillar GaAs−GaAlAs semiconductor cavities. Phys. Rev. Lett., 100, 047401(2008).

    [48] F. Li, Y. Li, Y. Cai, P. Li, H. Tang, Y. Zhang. Tunable open‐access microcavities for solid‐state quantum photonics and polaritonics. Adv. Quantum Technol., 2, 1900060(2019).

    [49] W. Lin, Y. Ota, Y. Arakawa, S. Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [50] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photon., 9, 296-303(2022).

    [51] R. I. Dzhioev, H. M. Gibbs, E. L. Ivchenko, G. Khitrova, V. L. Korenev, M. N. Tkachuk, B. P. Zakharchenya. Determination of interface preference by observation of linear-to-circular polarization conversion under optical orientation of excitons in type-II GaAs/AlAs superlattices. Phys. Rev. B, 56, 13405-13413(1997).

    [52] Y. Shen, B. Yu, H. Wu, C. Li, Z. Zhu, A. V. Zayats. Topological transformation and free-space transport of photonic hopfions. Adv. Photon., 5, 015001(2023).

    [53] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics, 11, 497-501(2017).

    [54] N. Jin, C. A. McLemore, D. Mason, J. P. Hendrie, Y. Luo, M. L. Kelleher, P. Kharel, F. Quinlan, S. A. Diddams, P. T. Rakich. Micro-fabricated mirrors with finesse exceeding one million. Optica, 9, 965-970(2022).

    [55] X. Zhang, Y. Zhou, K. M. Song, T.-E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, S. Woo. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter, 32, 143001(2020).

    [56] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [57] L. D. Landau, E. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory(2013).

    Xiaoxuan Luo, Yin Cai, Xin Yue, Wei Lin, Jingping Zhu, Yanpeng Zhang, Feng Li, "Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling," Photonics Res. 11, 610 (2023)
    Download Citation