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Optical skyrmions formed by photonic spin–orbit (SO) coupling are of significant interest in high-dimensional
optical information processing. We report the formation mechanism and non-Hermitian properties of skyrmion-
like states in a circular confinement potential with photonic SO coupling, which is preferably realized in a con-
cave-planar microcavity system. We show that the effective photonic gauge field leads to two split manifolds of
degenerate skyrmions whose spin textures can be controlled via the non-Hermitian properties by introducing
circularly polarized gain and loss, exhibiting dramatically discrepant evolutions at the two sides of the exceptional
point (EP). Furthermore, the lifetime degeneracy can be lifted by spatially inhomogeneous pumping according to
the non-Hermitian mechanism, enabling the possibility for the skyrmion laser. By introducing shape asymmetry
of the confinement potential, a double EP evolution can be achieved, which allows non-Hermitian control of the
SO coupled states with higher degrees of freedom. These results open the way for the non-Hermitian control of
photonic spin in confined systems, which would be of great significance for the fundamentals of advanced optical
information processing. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.478364

1. INTRODUCTION

Skyrmions are topological structures in magnetic materials
characterized by a vortex-type distribution of electron spin
[1], which are proposed to be applied in high-density data stor-
age and transfer [2]. An ideal skyrmion is a spatially restricted
topological structure of three-dimensional (3D) vector field,
characterized by the topological number, which is an integer
equal to the number of times the 3D vectors wrapping around
the unit sphere [3,4] (see Appendix B for details). As photons
also carry spin and orbital angular momentum (OAM), optical
and plasmonic Skyrmions, featured by the concentric alterna-
tion of the photon spin in space, have been demonstrated in
evanescent electromagnetic fields [5,6], meta-structures [7],
and free space [8,9], and they have been proposed for prom-
ising applications in information processing, storage, and trans-
portation [7]. The key mechanism for the formation of optical
Skyrmions is the photonic spin–orbit (SO) coupling, which in-
volves the interaction between the photon spin and orbital mo-
tion. The SO coupling effect has resulted in various types of
photonic Hall effect, chirality of photon transportation, and
topological phenomena in both free optics [10–12], dielectrics

[13–15], and surface plasmonics [16–20]. One of the most
promising on-chip platforms for implementing photonic SO
interaction is Fabry–Perot (FP) microcavities with metal mir-
rors or distributed Bragg reflectors (DBRs), which can support
the half-light, half-matter eigenstates of exciton-polaritons [21].
The various types of polarization associated mechanisms, in-
cluding the cavity transverse-electric transverse-magnetic
(TE-TM) splitting, the anisotropy of the active material, the
external magnetic field, and the combination of the above, serve
as an effective gauge field on the spin of cavity photons. This
leads to the research topic of spinoptronics in microcavities,
meaning the optical counterparts of spintronics [22]. The
mechanism of spinoptronics has led to remarkable physical
achievements such as the optical spin-Hall effect [23,24],
dark half-solitons [25], Rashba–Dresselhauses SO coupling
[26,27], and nontrivial topological bands and valleys [28–31].
Propagating photonic skyrmions have also been proposed and
demonstrated by resonantly pumping such systems with lin-
early polarized photons [22,32].

In addition to the exotic band structures and dynamics of
two-dimensional (2D) cavity photons and polaritons, the SO
coupling within a photonic potential of lateral confinement also
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leads to interesting physical phenomena. In the confined struc-
ture of circular symmetry, the cavity photons form a series of
zero-dimensional (0D) eigenstates of which the higher-order
transverse modes carry Laguerre–Gaussian (LG)-type OAM
[33]. The SO coupling in the confined potential, i.e., the in-
teraction between the photonic OAM and spin angular mo-
mentum (SAM) induced by the cavity TE-TM splitting, has
led to new eigenstates of spin vortices in open-access microcav-
ities [34] and the benzene-like photonic molecules [35]. It is
shown that the relation between such vector vortex states in
the first excited manifold, i.e., with OAM l � �1 and
SAM s � �1, could be described by a generalized theoretical
frame of higher-order Poincaré sphere (HOPS) [36,37]. For the
higher orders of the excited manifolds with jl j > 1, although
there are theoretical prediction and experimental demonstra-
tion of part of the possible eigenstates for l � �2 that display
complex polarization patterns showing the feature of skyrmions
[34,38], inadequate conclusions might be drawn without the
comprehensive understanding of the entire manifold, as will
be discussed later.

Meanwhile, the non-Hermitian properties, enabled by the
dissipative interaction with the environment, have brought sig-
nificant interest in microcavity photonics during recent years,
revealing rich physics associated with the exceptional point
(EP) [39–41]. It is shown that the non-Hermitian properties
around the EP can be employed to control the system perfor-
mance in lasers and sensors [40,42,43]. In polaritonic micro-
cavity systems with SO coupling, Voigt EPs were observed [44]
and demonstrated to display a divergent quantum metric [45].
The key feature associated with the non-Hermitian nature is
the strong modification of the photon spin, which is character-
ized by the measured polarization distribution of the photonic
bands. Therefore, one can certainly expect that, by applying the
non-Hermitian mechanism, an efficient control of the spin tex-
tures of the higher excited manifolds in confined systems can be
achieved, which nevertheless requires, first of all, a decent theo-
retical model to describe such a system.

In this paper, we investigate the eigenstates of the second
excited manifold of a circular harmonic potential in an FP mi-
crocavity with photonic SO coupling. By applying a theoretical
method based on the degenerate perturbation theory in quan-
tum mechanics, we obtain precisely the entire assembly of ei-
genvalues and eigenstates. We show that, under the effective
gauge field induced by the TE-TM splitting, degenerate sky-
rmions constitute two new manifolds of eigenstates, followed
by the non-Hermitian control of the skyrmion states presented
in a logical order. (1) The polarization textures of the degen-
erate skyrmions can be controlled via the non-Hermitian effects
of the circularly polarized gain and loss, exhibiting a parallel
movement on the Poincaré sphere before reaching the EP,
and a longitudinal movement toward the poles after passing
the EP. (2) The degeneracy of the skyrmions can be lifted
by introducing spatial inhomogeneity of the circularly polarized
gain and loss. (3) In a more complicated situation that involves
potential asymmetry, a double EP configuration can be estab-
lished, manifesting non-Hermitian control with multiple de-
grees of freedom. Our results initiate the unique methodology
for non-Hermitian control of photon spin in confined systems

and would play a significant role in developing advanced mech-
anisms for on-chip polarization control of light.

2. FORMATION OF OPTICAL SKYRMIONS IN
CONFINED SYSTEMS WITH TE-TM SPLITTING

The TE-TM splitting in an FP microcavity is induced by the
difference of surface reflectance at the cavity mirrors, which de-
fines two non-degenerate polarization directions associated
with the in-plane wave vector, as shown in Fig. 1(a), known
as the TE- and TM-polarized cavity modes. The TE-TM split-
ting serves as an effective gauge field introducing SO coupling
of the 2D photons [23,46]. When the cavity photons are con-
fined in a photonic potential, the photonic Hamiltonian can be
written as [28,46]

Ĥ �
�

ℏ2k2
2m � V βk2e−2iφ

βk2e2iφ ℏ2k2
2m � V

�
, (1a)

in the circular polarization basis

σ� � � 1 0 �T , (1b)

σ− � � 0 1 �T , (1c)

where σ� (σ−) represents the right (left) circularly polarized
photons. In Eq. (1a), k is the wave vector composed of
two components kx � k cos φ and ky � k sin φ, m �
2∕�m−1

TE � m−1
TM�, with mTE (mTM) corresponding to the trans-

verse (longitude) effective polariton mass. V represents the con-
finement potential and βk2e�2iφ is the TE-TM splitting term
with φ the polar angle. The Hamiltonian of the free 2D pho-
tons can be written in the form of Ĥ � Ĥ 0 �ΩB · σ, where
Ĥ 0 � ℏ2k2∕�2m� � V represents the kinetic and potential en-
ergies, σ is a column vector consisting of Pauli matrices, and
ΩB � �βk2 cos 2φ, βk2 sin 2φ, 0� is the effective gauge field
[23]. A confinement potential can be realized either by etching
the FP microcavity into micropillars [47] or using the open-ac-
cess microcavity structure consisting of a microscale concave
mirror [33,48], as illustrated in Fig. 1(b). When the confine-
ment potential is much stronger than the eigenenergy splitting
induced by the TE-TM SO coupling, we can apply the pertur-
bation theory, where the terms of TE-TM splitting are treated
as perturbation. Such perturbation theory is proved to fit well
with the situation of open-access microcavities, where the
concave-planar mirror complex provides very deep confine-
ment potential [34]. The circular-shaped confinement can be
expressed as a potential for a harmonic oscillator V �
�mω2�x2 � y2��∕2, with ω2 determining the confinement
strength. The eigenstates of the unperturbed cavity photons,
i.e., when β � 0, under circular symmetry are the LG modes,
which is denoted as LGσ�

p,l , where σ
� represent right- and left-

circular polarization, while p �l� represents the radial (azimu-
thal) quantum number. The LG modes are �2p� l�-
degenerate, forming a six-dimensional (6D) orthogonal basis
in the second excited manifold,

LGσ�
1,0 �

α�1 − α2�x2 � y2��ffiffiffi
π

p e−
α2�x2�y2�

2

�
1
0

�
, (2a)
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LGσ−
1,0 �

α�1 − α2�x2 � y2��ffiffiffi
π

p e−
α2�x2�y2�

2

�
0
1

�
, (2b)

LGσ�
0,2 �

α3�x � iy�2ffiffiffiffiffi
2π

p e−
α2�x2�y2�

2

�
1
0

�
, (2c)

LGσ−
0,2 �

α3�x � iy�2ffiffiffiffiffi
2π

p e−
α2�x2�y2�

2

�
0
1

�
, (2d)

LGσ�
0,−2 �

α3�x − iy�2ffiffiffiffiffi
2π

p e−
α2�x2�y2�

2

�
1
0

�
, (2e)

LGσ−
0,−2 �

α3�x − iy�2ffiffiffiffiffi
2π

p e−
α2�x2�y2�

2

�
0
1

�
, (2f)

in which α is the parameter determining the mode size, given
by α �

ffiffiffiffiffiffiffiffiffiffiffiffi
mω∕ℏ

p
. The total angular momentum, defined as

J � l � s with s representing the quantum number of
SAM, has possible values of J � −3, − 1, 1, or 3, as shown
in Table 1.

We apply the degenerate perturbation theory (see
Appendix A for details) for nonzero β, which results in a
6 × 6 perturbation matrix of the zeroth order in the 6D basis
�LGσ�

1,0,LG
σ−
1,0,LG

σ�
0,2,LG

σ−
0,2, LG

σ�
0,−2, LG

σ−
0,−2�T ,

Ĥ 1 �

0
BBBBBB@

0 0 0 2
ffiffiffi
2

p
α2β 0 0

0 0 0 0 2
ffiffiffi
2

p
α2β 0

0 0 0 0 0 0
2
ffiffiffi
2

p
α2β 0 0 0 0 0
0 2

ffiffiffi
2

p
α2β 0 0 0 0

0 0 0 0 0 0

1
CCCCCCA
,

(3)

in which the unperturbed eigenenergy of the second excited
manifold is set to be zero and is applied hereafter. The matrix
yields the new eigenenergies,

Ei � 2
ffiffiffi
2

p
α2β, (4a)

Eii � 0, (4b)

Table 1. Total Angular Momentum J of the Second
Excited Manifold LG Modesa

LGσ�
p,l l s J � l � s

LGσ�
1,0 0 1 1

LGσ−
1,0 0 −1 −1

LGσ�
0,2 2 1 3

LGσ−
0,2 2 −1 1

LGσ�
0,−2 −2 1 −1

LGσ−
0,−2 −2 −1 −3

as � �1 respectively correspond to σ� polarized photons.

Fig. 1. Polarization textures of the eigenstates of the second excited manifold. (a) Schematic of the TE-TM splitting characterized by β. (b) Sketch
of an open-access microcavity; the concave-planar mirror configuration provides the confined potential V . (c) Energy levels of the eigenstates under
the effect of TE-TM splitting. α is the parameter determining mode size. (d)–(i) Left panels, polarization textures of each eigenstate which is
instructed in the main text; right panels, the four small graphs representing the intensity distribution, Stokes components S1, S2, and S3.
The states presented in (d) and (e), (f ) and (g), (h) and (i) are all twofold degenerate in energy. The following parameters are used:
α � 1.54 μm−1, β � 0.06 meV · μm2.
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Eiii � −2
ffiffiffi
2

p
α2β, (4c)

and the new corresponding eigenstates,

Ψi−a � −
1ffiffiffi
2

p LGσ�
1,0 −

1ffiffiffi
2

p LGσ−
0,2, (5a)

Ψi−b �
1ffiffiffi
2

p LGσ−
1,0 �

1ffiffiffi
2

p LGσ�
0,−2, (5b)

Ψii−a � LGσ�
0,2 , (5c)

Ψii−b � LGσ−
0,−2, (5d)

Ψiii−a �
1ffiffiffi
2

p LGσ�
1,0 −

1ffiffiffi
2

p LGσ−
0,2, (5e)

Ψiii−b � −
1ffiffiffi
2

p LGσ−
1,0 �

1ffiffiffi
2

p LGσ�
0,−2: (5f)

The eigenenergies and the polarization textures of the eigen-
states are plotted in Fig. 1(c) and Figs. 1(d)–1(i), respectively.
The TE-TM splitting partially lifts the degeneracy of manifold,
resulting in three energy levels, which are all double-degenerate.
As the polarization patterns of the states are very complicated,
we adopt a reader-friendly method to display them: the shapes
(circular, elliptical, and linear) of the drawings represent the
calculated circular polarization degree while the colors represent
the direction of the SAM, with orange, blue, and purple mean-
ing the right circular (elliptical), left circular (elliptical), and
linear polarizations, respectively. The Ψii states, being the bare
LG states of J � �3, correspond to vector vortices with a topo-
logical charge of 2, which are out of the interest of this article.
On the contrary, the Ψi and Ψiii states, exhibiting concentric
alternating SAM along the radial direction, are optical sky-
rmions defined by the Stokes vectors on the Poincaré sphere
with a skyrmion number of �2 [4,49–52]. The association
of these polarization textures with ideal skyrmions is presented
in detail in Appendix B. It is obvious from Eqs. (5a), (5b), (5e),
and (5f ) that the Ψi−a (resp. Ψi−b) state is non-degenerate with
the Ψiii−a (resp. Ψiii−b), while they are the coherent superposi-
tions of the J � �1 (resp. J � −1) modes with a relative phase
of 0 and π, respectively.

3. NON-HERMITIAN CONTROL OF THE
DEGENERATE OPTICAL SKYRMIONS

Despite the skyrmion-like eigenstates given by the perturbation
theory, the microcavity is most unlikely to display skyrmion-
like optical mode due to the twofold degeneracy. Indeed,
since the two skyrmions of Ψi (or Ψiii) are degenerate, the
actual eigenstate can be a coherent superposition of them with
any relative phase, yielding an antenna-like mode as shown in
Fig. 2(a), which displays linear polarization everywhere.
Unfortunately, the degenerate skyrmion modes are the most
unstable against asymmetry. If the system is perfectly
Hermitian with no dissipation, a slight deformation of the cir-
cular potential shape or a tiny defect will lead to a phase pinning
between them, resulting in the antenna-like mode, which is, on
the contrary, very robust against asymmetric perturbations.
Nevertheless, non-Hermitian properties of the cavity photons
could allow the skyrmion mode to exist in a special form. The
finite coherence (linewidth) due to the dissipation prevents
Ψi,iii−a and Ψi,iii−b from going through a coherent interference
but instead enables an incoherent superposition, meaning a
simple addition of intensities without coherent phase. The re-
sulting mode loses the circular polarization degree due to the
incoherent superposition between the left and right circularly
polarized light but keeps the linear polarization degree due to
the fact that the linear polarization angle is the same for Ψi,iii−a
and Ψi,iii−b everywhere. The “incoherent skyrmion” formed in
this way is characterized by partial linear polarization features
with a concentric alternating polarization degree as calculated
in Fig. 2(b) and is, therefore, not exactly a skyrmion due to the
loss of circular polarization. Indeed, the experimental observa-
tion of such a mode, though not thoroughly explained, can be
found in Fig. 3 of Ref. [34]. In fact, incoherent superposition
could allow the observation of degenerate modes in their origi-
nal form without becoming other types of modes via manda-
tory phase pinning, such as the transverse modes reported in
Fig. 3 of Ref. [33], which shows LG-like spatial distribution
of intensity by keeping the degeneracy.

It is obvious that the incoherent states are less interesting
due to the lack of coherent phase and polarization. Therefore,
it is essential to develop a method to select a coherent single
state of the skyrmion, which can be achieved by introducing
asymmetry of the non-Hermitian properties. Before going into

Fig. 2. Optical skyrmions with lifting and keeping the mode degeneracy. (a) Left panel, polarization textures of the linear combination of degen-
erate skyrmion-like states with J � �1 at zero phase difference; right panels, the four small graphs represent the intensity distribution, Stokes
components S1, S2, and S3. (b) Polarization degree S0 of the incoherent superposition of the two degenerate skyrmion-like states.
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the details, we first explore the non-Hermitian properties of the
degenerate skyrmions by introducing circularly polarized gain
and loss, which is associated with the main interest of the ar-
ticle. The corresponding Hamiltonian with the same basis in
Eqs. (1b) and (1c) is written as

Ĥ �
�

ℏ2k2
2m � V � iρ βk2e−2iφ

βk2e2iφ ℏ2k2
2m � V − iρ

�
, (6)

in which ρ is the imaginary part of the uncoupled circularly-
polarized cavity photons, being gain for σ� and loss for
σ− polarizations. Such circularly-polarized gain in polaritonic
microcavities can be provided either by resonant excitation
or by non-resonant pumping on valley addressable materials,
such as 2D transition metal dichalcogenides (TMDs) [53].
The resulting eigenstates associated with J � �1 and J � −1,
derived from the perturbation theory, can be reconstructed by a
Hamiltonian in the four-dimensional (4D) basis of
�LGσ�

1,0,LG
σ−
0,2,LG

σ�
0,−2, LG

σ−
1,0�T ,

Ĥ 1 �

0
BBB@

iρ 2
ffiffiffi
2

p
α2β 0 0

2
ffiffiffi
2

p
α2β −iρ 0 0

0 0 iρ 2
ffiffiffi
2

p
α2β

0 0 2
ffiffiffi
2

p
α2β −iρ

1
CCCA, (7)

where the nonzero elements form two independent 2 × 2 ma-
trices. The top-left and the bottom-right ones, corresponding
to J � �1 and J � −1 states, respectively, display the math-
ematical forms of standard Hamiltonians for a non-Hermitian
system with EPs [39]. The non-Hermitian behavior due to the
increase of ρ is demonstrated in Figs. 3(a) and 3(b). At ρ � 0,
the eigenstates reduce to the Hermitian situation of degenerate
skyrmions Ψi−a,b and Ψiii−a,b, with an energy (the real part of
the eigenvalue) splitting induced by the SO coupling term
2
ffiffiffi
2

p
α2β and balanced gain and loss (the same imaginary part

of the eigenvalue equal to zero). With increasing ρ, the bifur-
cation of the real part is reduced until an EP is reached at the
condition ρ � 2

ffiffiffi
2

p
α2β, displaying coalesced eigenvalues of

both the real and imaginary parts. After passing the EP, the
bifurcation of imaginary parts arises, resulting in gain (resp.
loss) for the degenerate skyrmions Ψi−a (Ψiii−a) and Ψi−b
(Ψiii−b) with J � �1 and J � −1, respectively.

The most interesting phenomena lie in the variation of the
states with ρ, which is characterized by the polarization tex-
tures. Herein we plot the evolution of the polarization textures
for Ψi−a in Figs. 4(a)–4(c), while the other skyrmion states fol-
low the same trend. Apparently, the linear polarization angle,
i.e., the long axis of the polarization ellipse, at every spatial
point rotates with increasing ρ until reaching the maximum
rotation of 45° at the EP presented by Fig. 4(b). Then, by fur-
ther increasing ρ, the degree of circular polarization increases at
every spatial point (except those pure σ� polarized, which
maintains unchanged), changing toward σ�. Such an evolution
could be nicely presented by the traces on the surface of the
Poincaré sphere, as displayed in Fig. 4(d), in which we show
the trace of the red spatial spot in Figs. 4(a)–4(c). The polari-
zation evolution exhibits a parallel movement of a quarter
sphere on the surface until reaching the EP, and then a longi-
tudinal movement toward the north pole after passing the EP,
while the points P1, P2, and P3 correspond to the situation in
Figs. 4(a)–4(c), respectively. As the polarization texture of a sky-
rmion generally covers the whole surface of the Poincaré sphere,
the collective motion of the skyrmion with increasing ρ is
equivalent to a parallel rotation of the sphere surface, followed
by a density accumulation toward one of the poles, which can
be of interest for techniques involving complex polarization
control.

The evolution of the polarization pattern can be understood
by a simple analysis from the general mathematical form of the
non-Hermitian Hamiltonian,

Ĥ �
�
iρ μ1
μ2 −iρ

�
, (8)

which can apply to any 2D orthogonal basis. The positive num-
bers μ1,2 are the coupling coefficients. The eigenvalues and the
corresponding eigenstates are

Ei �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1μ2 − ρ

2
p

, (9a)

ψ i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ22 � μ1μ2
p �

iρ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1μ2 − ρ

2
p
μ2

�
, (9b)

Eii � −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1μ2 − ρ

2
p

, (9c)

ψ ii �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ22 � μ1μ2
p �

iρ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1μ2 − ρ

2
p

μ2

�
: (9d)

An EP occurs when ρ � ffiffiffiffiffiffiffiffiffi
μ1μ2

p
, at which Ei and Eii coalesce.

Now we take ψ i as an example to analyze the evolution of ei-
genstates with increasing ρ, while ψ ii follows similar rules. In
the strong coupling regime before reaching the EP, i.e.,
ρ <

ffiffiffiffiffiffiffiffiffi
μ1μ2

p
, ψ i can be written as

ψ i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ22 � μ1μ2
p �

μ1μ2 exp
�
i arc tan ρffiffiffiffiffiffiffiffiffiffiffiffi

μ1μ2−ρ
2

p
�

μ2

�
, (10)

in which the square root terms are real. In this regime, changing
ρmeans varying the relative phase between the two elements of

Fig. 3. Non-Hermitian control of the optical skyrmions. (a) Real
and (b) imaginary parts of the eigenvalues as a function of the circular
gain and loss ρ. (c) and (d) are, respectively, the same as (a) and (b) ex-
cept that ρ is enveloped by Gaussian-like spatial distribution with the
size parameter σ � 3.08 μm−1. The following parameters are used:
α � 1.54 μm−1, β � 0.06 meV · μm2.

614 Vol. 11, No. 4 / April 2023 / Photonics Research Research Article



the basis, which reaches the maximum of π∕2 at the EP when
ρ � ffiffiffiffiffiffiffiffiffi

μ1μ2
p

. On the other hand, in the weak regime after pass-
ing the EP, i.e., ρ >

ffiffiffiffiffiffiffiffiffi
μ1μ2

p
, ψ i has to be written in the fol-

lowing form to keep the square room terms real:

ψ i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ22 � μ1μ2
p �

i�ρ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − μ1μ2

p
�

μ2

�
: (11)

In this regime, the relative phase between the two elements of
the basis is fixed to be π∕2 determined by the imaginary unit i
in the first row. Nevertheless, changing ρ means varying the
relative amplitude between the two elements. If the orthogonal
basis is chosen to be the σ� polarization, the above evolution
corresponds to the one presented in Figs. 4(a)–4(c). For non-
zero μ1 and μ2, the polarization will not reach pure σ� (the
north pole of the Poincaré sphere) until ρ becomes infinite,
which is not achievable. Meanwhile, the single states of σ�

(the north and south poles of the Poincaré sphere) do not
evolve under the gain or loss of the same or orthogonal polari-
zation. The striking fact we can conclude from the above rea-
soning is that the evolution of a system of high complexity, e.
g., the polarization texture of coupled modes with complicated
OAM and SO coupling, can be inferred from that of the single
uniform state at each pixel. It would be a very interesting topic
to investigate how well this principle can apply for various types
of complicated systems and at what conditions it holds. At least

in our system, it requires the absence of interaction between
different spatial points of the LG mode even if they exhibit
phase correlation; otherwise, each pixel cannot decide its fate
of evolution independently. Indeed, a similar polarization evo-
lution is also seen in other non-Hermitian systems in momen-
tum space [45], which show very different photonic structures
as well as the mechanism of SO coupling.

4. LIFT OF DEGENERACY OF THE OPTICAL
SKYRMIONS

Despite all the interests of the non-Hermitian phenomena, the
introduction of the spatially uniform circularly polarized gain
and loss does not affect the degeneracy of the skyrmion states,
leaving Ψi−a,iii−a and Ψi−b,iii−b still coherently superimposed and
incoherently mixed in Hermitian and non-Hermitian situa-
tions, respectively. This is because the overall circular polariza-
tion degrees of Ψi−a,iii−a and Ψi−b,iii−b integrated over the space
are zero, indicating a balance between σ� and σ−. This reason is
obvious as the two bare components of each degenerate group
(LGσ�

1,0, LG
σ−
0,2 for J � �1 and LGσ�

0,−2,LG
σ−
1,0 for J � −1) have

equal components of pure σ� and σ− polarizations, due to the
fact that the amplitude of the LG modes is normalized. This
situation, nevertheless, can be broken by introducing spatially
inhomogeneous pumping, as the σ� and σ− LG modes of the
same J have different spatial distributions. For example, when

Fig. 4. Evolution of the polarization textures ofΨi−a in Fig. 3 under non-Hermitian manipulation. (a)–(c) intuitively show the change of polarized
state with the increase of ρ with spatially uniform gain and loss corresponding to Figs. 3(a) and 3(b). (d) Poincaré sphere representation of polari-
zation texture evolution. Coordinates S1, S2, and S3 are three components of Stokes vectors. Point P denotes the polarization state at the red spatial
point shown in (a)–(c), which locates at positions P1, P2, and P3 when (a) ρ � 0, (b) ρ � 0.40167 (at EP), and (c) ρ � 0.5, respectively.
(e) Polarization texture ofΨi−a at the EP with Gaussian-enveloped gain and loss. The four small graphs on the right panels of (a)–(c) and (e) represent
the intensity distribution, Stokes components S1, S2, and S3, respectively, while the left panels represent the polarization texture drawings. The
following parameters are used: α � 1.54 μm−1, β � 0.06 meV · μm2.
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the circularly-polarized gain (loss) is modulated by a Gaussian-
like spatial distribution described by the Hamiltonian,

Ĥ �
 

ℏ2k2
2m � V � iρe−

σ2�x2�y2�
2 βk2e−2iφ

βk2e2iφ ℏ2k2
2m � V − iρe−

σ2�x2�y2�
2

!
,

(12)

the basis of which is the same as Eqs. (1a) and (1c). Herein ρ is
modulated by a Gaussian-like spatial envelope with the size
parameter of σ. The zeroth-order perturbation matrix on the
basis �LGσ�

1,0,LG
σ−
0,2,LG

σ�
0,−2, LG

σ−
1,0�T reads

Ĥ 1 �

0
BBBBBB@

2iα2ρ�4α4�σ4�
�2α2�σ2�3 2

ffiffiffi
2

p
α2β 0 0

2
ffiffiffi
2

p
α2β − 8iα6ρ

�2α2�σ2�3 0 0

0 0 8iα6ρ
�2α2�σ2�3 2

ffiffiffi
2

p
α2β

0 0 2
ffiffiffi
2

p
α2β − 2iα2ρ�4α4�σ4�

�2α2�σ2�3

1
CCCCCCA
,

(13)

which yields the eigenstates and eigenfunctions,

Ei−a � 2
ffiffiffi
2

p
β

�
α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
� iρ α2σ4

A

�
, (14a)

Ψi−a �
iB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ�
1,0 �

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ−
0,2, (14b)

Ei−b � 2
ffiffiffi
2

p
β

�
α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
− iρ α2σ4

A

�
, (14c)

Ψi−b �
iB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ�
0,−2 �

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ−
1,0, (14d)

Eiii−a � 2
ffiffiffi
2

p
β

�
−α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
� iρ α2σ4

A

�
, (14e)

Ψiii−a �
iB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ�
1,0 �

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ−
0,2, (14f)

Eiii−b � 2
ffiffiffi
2

p
β

�
−α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
− iρ α2σ4

A

�
, (14g)

Ψiii−b �
iB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − B2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ�
0,−2 �

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p LGσ−
1,0, (14h)

in which A � 2
ffiffiffi
2

p
β�2α2 � σ2�3 and B � ρ�8α4 � σ4�.

Although the eigenvalues Ei−a,iii−a and Ei−b,iii−b still show
degeneracy in the real parts, the degeneracy of the imaginary
parts is lifted at nonzero ρ, which is well portrayed by
Figs. 3(c) and 3(d), showing bifurcations of the imaginary (resp.
real) parts of the eigenvalues when the real (resp. imaginary)
parts coalesce. Interestingly, seen from Eq. (14), the eigenfunc-
tions show balanced amplitudes between the two superposed

bare LG modes until reaching the EP, indicating that the ei-
genstates are still optical skyrmions, at least before and at the
EP. The discrepancy in the imaginary parts of eigenenergies in
Eq. (14) varies with the size parameter σ, reaching a maximum
of �ρ∕13.5 at σ � 3.08 μm−1, which induces non-negligible
effects. For example, at the EP, the discrepancy of the imagi-
nary parts can reach ∼536 μeV [see Fig. 3(d)] with the param-
eter settings α � 1.54 μm−1 and β � 0.06 meV · μm2, typi-
cal for GaAs-based microcavities for exciton-polaritons. The
value of ∼536 μeV is certainly non-negligible in a high-Q
microcavity of which the mode linewidth can reach 42 μeV
(Q � 35,000 at the wavelength ∼845 nm) or even narrower.
We note that, in the special situation of σ � α, the splitting in
the imaginary parts still reaches as large as ∼89 μeV at the EP.
Such values of difference in mode gain or loss can efficiently
pick up the mode of better gain when the system reaches above
lasing threshold, leading to the emission of a single optical sky-
rmion. This mechanism may already work well even before
reaching the EP, depending on the details of the experimental
system, the cavity quality, and the gain material. The polariza-
tion textures with the Gaussian-enveloped gain and loss show
approximately the same features as in Figs. 4(a)–4(c), with the
polarization textures of Ψi−a at ρ � 3.62 meV (at the EP) plot-
ted in Fig. 4(e) as an example. It is noticeable that, when
slightly above threshold, the system may experience mode com-
petition between Ψi and Ψiii at different frequencies; never-
theless, the intensity of each mode usually gets stabilized when
the optical pumping power reaches well above threshold [34].
The possible lasing mode competition, which is mainly a tech-
nical issue for practical implementations, is out of the scope of
this manuscript.

5. NON-HERMITIAN CONTROL WITH
ASYMMETRIC PHOTONIC POTENTIAL

The non-Hermitian control could be extended to asymmetric
photonic potentials, which provide an extra degree of freedom
to tune the non-Hermitian system, and would play a non-neg-
ligible role in actual experiments for studying SO coupling with
photonic confinement [34]. When introducing an asymmetry
parameter of ellipticity δ, we add a perturbation term
V 0 � �mω2�x2 − y2�δ�∕2 to the photonics potential V , which
yields the perturbation matrix with a Gaussian-like gain (loss),

Ĥ 1 �

0
BBBBBB@

i 10ρ27 2
ffiffiffi
2

p
α2β − mω2δffiffi

2
p

α2
0

2
ffiffiffi
2

p
α2β −i 8ρ27 0 − mω2δffiffi

2
p

α2

− mω2δffiffi
2

p
α2

0 i 8ρ27 2
ffiffiffi
2

p
α2β

0 − mω2δffiffi
2

p
α2

2
ffiffiffi
2

p
α2β −i 10ρ

27

1
CCCCCCA
,

(15)

in which we still apply the basis �LGσ�
1,0, LG

σ−
0,2, LG

σ�
0,−2,

LGσ−
1,0�T . Herein we let σ � α for simplicity. The calculated

eigenvalues with a non-zero δ are plotted in Fig. 5, which shows
a complex feature of two EPs with increasing ρ. At ρ � 0, be-
sides the SO coupling that lifts the fourfold degeneracy into
two groups of skyrmions as discussed before, the ellipticity δ
induces an extra orbital coupling that further lifts the
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degeneracy of the skyrmions, forming four antenna-like modes,
as exemplified in Fig. 6(a) with Ψ1. As the modes are no longer
skyrmions herein, the labeling has to be rearranged with sub-
scripts of Arabic number Ψ1,2,3,4, as indicated in Fig. 5. The
two EPs, labeled as EP1 and EP2, correspond to the coalescence
of the SO coupling induced by TE-TM splitting and the orbital
coupling induced by the potential ellipticity, respectively. The
eigenstates’ evolution presented in Fig. 6, nevertheless, shows a
combined feature of the two effects. The polarization texture
starts to gain circular polarization degree after reaching EP1,
while the rotation of the linear polarization angle, nevertheless,
does not reach 45° until reaching EP2. The antenna-like inten-
sity pattern rotates with the linear polarization angle up to 45°
when reaching EP2 and then evolves toward a symmetric donut
shape with increasing ρ. It should be noted that EP1 and EP2
are second-order EPs (at which the eigenvalues of two states
coalesce) instead of fourth-order ones, meaning the quantities
of EP1 and EP2 are both doubled, seen in the graphs of the real

and the imaginary parts in Fig. 5, respectively. The degeneracy
of eigenenergies is fully lifted in the real part before EP1 and in
the imaginary part after EP2, while a twofold degeneracy is kept
between EP1 and EP2. Interestingly, the degeneracies are for
different mode groups as in the real and in the imaginary
parts. For the real part, the degeneracy happens between Ψ1

and Ψ3 (meanwhile Ψ2 and Ψ4), while for the imaginary
part, the degeneracy happens between Ψ1 and Ψ2 (meanwhile
Ψ3 and Ψ4). Nevertheless, when the potential asymmetry is
not negligible, the non-Hermitian control never results in
skyrmion-like states.

Finally, we discuss the possible strategies for the experimen-
tal demonstration of the cavity skyrmion states. The experi-
mental demonstration requires TE-TM splitting larger than
the spectral linewidth of the cavity (or polariton) modes and
energy splitting by cavity shape asymmetry, but smaller than
the spectral separation between different degenerate manifolds.
This means high Q-factor, large TE-TM splitting, and deep

Fig. 5. Non-Hermitian control of the second manifold states with elliptical asymmetry of the photonic potential. (a) Real and (b) imaginary parts
of the eigenvalues as a function of the circular gain and loss ρ with Gaussian-like envelope. The enlarged parts of the bifurcation of the real (imagi-
nary) part are shown in (a-1) and (a-2) [(b-1) and (b-2)]. The following parameters are used: α � 1.54 μm−1, β � 0.06 meV · μm2, and δ � 0.15.

Fig. 6. Evolution of the polarization textures of Ψ1 in Fig. 5 under the non-Hermitian manipulation. The left panels of (a)–(f ) intuitively show
the change of polarized state with the increase of ρ. The right panels are the four small graphs representing the intensity distribution, Stokes
components S1, S2, and S3, respectively. The values of S3 are uniform in (a)–(e). In (a)–(c) S3 � 0, while in (d) S3 � 0.65 and (e) S3 � 0.7.
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photonic potential of the cavity are required. Seen from the
literature, the concave-planar microcavity is a very promising
candidate [48], in which coherent single skyrmions could be
excited by a small-size, circularly polarized near-resonant
pump combined with a spatially uniform, linearly polarized
non-resonant pump. An alternative option for excitation is
to use an elliptically polarized non-resonant pump of small-size,
exciting valley-coherent exciton-polaritons. Both approaches
provide better gain for one skyrmion over the other and,
thereby, select a single skyrmion state to lase. Especially, with
the fabrication of the on-chip ultra-high finesse concave-planar
microcavities recently published [54], it is very promising that
the skyrmions can be emitted from a single micro-chip.
Meanwhile, the micropillar cavity polariton is also a possible
solution. It has the advantage of being easier to be fabricated
on chip for integration, while its TE-TM splitting and pho-
tonic potential depth are, however, smaller than the planar-
concave cavity filled by air. This disadvantage may be overcome
by using coupled pillar structures in which spin vortices have
been experimentally demonstrated.

6. CONCLUSION

In summary, we have precisely obtained the eigenstates of the
second excited manifold of confined photons under the effect
of SO coupling induced by the effective gauge field associated
with TE-TM polarization splitting, and we demonstrated the
methodology of non-Hermitian control of these states, includ-
ing reaching the EP with gain of circular polarization, getting
non-degenerate skyrmions by applying inhomogeneity in gain
and loss, and multi-dimensional non-Hermitian control using
the asymmetry of the photonic potential. The physics revealed
in this article applies not only to microcavity systems but also to
any possible platform with similar effective gauge field enabling
a monopole-like polarization pattern in the momentum space.
The capability of preparing controlled skyrmion-like optical
states would bring significant advances in the basic understand-
ing and practical applications of spinoptronics. Magnetic sky-
rmions already enabled high-density information storage in
spintronics [55], which is promising for application to optical
information in spinoptronics. Meanwhile, vector vortex beams
are already demonstrated to be an emerging tool for optical in-
formation storage and communication [56], as they enable
more degrees of freedoms by combining the OAM and
SAM. The skyrmion, as a special form of vector vortex beam,
would certainly lead to more advanced protocols for optical in-
formation, considering its advantage in topological and propa-
gation properties [4]. Especially, the skyrmions investigated in
this work are the eigenstate of a microcavity, which can be di-
rectly generated on-chip with a small mode size of microns and
do not require complicated optical setups generally for high-or-
der vector vortex states (OAM ≥ 2), exhibiting a unique advan-
tage for device integration and miniaturization.

APPENDIX A: THE DEGENERATE
PERTURBATION THEORY

We present here the theoretical method, i.e., the degenerate
perturbation theory, used throughout the main text to derive

the eigenenergies and the eigenstates. In fact, the perturbation
theory is a standard method in most of the textbooks on
quantum mechanics [57]. It takes three steps to perform the
calculation.

(1) Separating the system Hamiltonian Ĥ into two parts:
the unperturbed one Ĥ 0 that has known solutions and the per-
turbation one Ĥ 0 containing the perturbation terms.

(2) Deriving the perturbation matrix Ĥ 1. Selecting a com-
plete set of the eigenstates of Ĥ 0 as an orthogonal basis, which
can be written as fϕng � �ϕ1,ϕ2,…, ϕN �T , withN being the
dimension of the basis. Calculating the value of the inner prod-
uct H 0

nm � �ϕn, Ĥ
0ϕm� using Ĥ 0 and fϕng, and H 0

nm consti-
tutes the matrix element at the nth row and mth column of the
perturbation matrix Ĥ 1.

(3) Diagonalizing the perturbation matrix Ĥ 1 to obtain its
eigenvalues and eigenvectors. The eigenvectors are the zeroth-
order eigenfuctions of the system Ĥ , and the eigenvalues are the
corresponding first-order eigenenergy corrections of the system
Hamiltonian Ĥ .

Steps (1)–(3) in our microcavity system are performed in
detail as follows.

(1) In the situation when the potential V is much stronger
than the energy splitting induced by the TE-TM splitting, the
Hamiltonian Ĥ [Eq. (1) of the main text] is seperated as

Ĥ � Ĥ 0 � Ĥ 0

�
�

ℏ2k2
2m � V 0

0 ℏ2k2
2m � V

�
�
�

0 βk2e−2iφ

βk2e2iφ 0

�
,

(A1)

where Ĥ 0 is the Hamiltonian of the unperturbed photons in
the circularly symmetric confinement and the corresponding
eigenstates are represented by the LG modes with circular
polarization basis, shown as Eq. (2) in the main text for the
second excited manifold. Ĥ 0 is the perturbation
Hamiltonian containing the TE-TM splitting terms.

(2) The sixfold degenerate eigenstates of Ĥ 0 form a 6D
orthogonal basis written as �LGσ�

1,0, LG
σ−
1,0,LG

σ�
0,2,LG

σ−
0,2,

LGσ�
0,−2, LG

σ−
0,−2�T , which we denote as fϕng � �ϕ1,ϕ2,ϕ3,ϕ4,

ϕ5,ϕ6�T . Then the perturbation matrix elements can be rep-
resented by H 0

nm � �ϕn, Ĥ
0ϕm�, where the perturbation

Hamiltonian Ĥ 0 is converted from the momentum to the real
space representation by kx → −i∂∕∂x and ky → −i∂∕∂y,

Ĥ 0 �

0
B@ 0 β

�
− ∂2
∂x2 � ∂2

∂y2 � 2i ∂2
∂x∂y

�
β
�
− ∂2
∂x2 � ∂2

∂y2 − 2i
∂2
∂x∂y

�
0

1
CA:

(A2)

Nowwe take the matrix elementH 0
14 as an example to show the

calculation process:
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H 0
14 � �ϕ1, Ĥ

0ϕ4�

�
ZZ

∞

−∞
ϕ†
1Ĥ

0ϕ4dxdy

�
ZZ

∞

−∞
�LGσ�

10 �†

0
BBB@

0 β
�
− ∂2
∂x2 � ∂2

∂y2 � 2i ∂2
∂x∂y

�
β
�
− ∂2
∂x2 � ∂2

∂y2 − 2i
∂2
∂x∂y

�
0

1
CCCA�LGσ−

0−2�dxdy

�
ZZ

∞

−∞
�LG	

0−2� 1 0 ��

0
BB@ 0 β

�
− ∂2LG0−2

∂x2 � ∂2LG0−2

∂y2 � 2i ∂
2LG0−2
∂x∂y

�
β
�
− ∂2LG0−2

∂x2 � ∂2LG0−2

∂y2 − 2i ∂
2LG0−2
∂x∂y

�
0

1
CCA
�
0

1

�
dxdy

� β

ZZ
∞

−∞
LG	

0−2

�
−
∂2LG0−2

∂x2
� ∂2LG0−2

∂y2
� 2i

∂2LG0−2

∂x∂y

�
dxdy

� 2
ffiffiffi
2

p
α2β, (A3)

where the superscripts † and *, respectively, represent Hermite-
conjugate and conjugate operations, and the mathematical ex-
pressions of the LG functions are given in Eq. (2) of the main
text. Calculating all the matrix elements this way yields the
6 × 6 perturbation matrix Ĥ 1 as shown in Eq. (3) of main text.

(3) Diagonalizing Ĥ 1 yields the eigenenergies and eigen-
states displayed in Eqs. (4) and (5) in the main text.

In the rest of the main text, the terms containing the non-
Hermitian gain and loss ρ as well as the potential asymmetry δ

are all treated as perturbation terms in Ĥ 0 exactly in the same
way as described above.

APPENDIX B: THE SKYRMION TOPOLOGY

In this appendix, we show how the eigenstates with concentri-
cally alternating polarization correspond to the ideal skyrmion
and derive the skyrmion number. The ideal skyrmion is a spa-
tially confined 3D vector field, showing topological properties

Fig. 7. Spatial distribution of the 3D vector n � �nx , ny , nz�. (a)–(c) correspond to the eigenstates in Figs. 1(d), 4(b), and 1(f ) of the main text,
within the region of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
≤ 0.65 μm. Each group contains a 3D map of the vector n and the 2D colored maps of nz [i.e., cos β�r�� and

arctan�ny∕nx� [i.e., α�θ�]. The range of arctangent values is set from –π to π to cover the 2π range of the angle α of the Poincaré sphere. Note that the
parts of the graphs exceeding the range of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
≤ 0.65 μm are out of the skyrmion structure and, therefore, do not represent proper physical

meaning, which is just an extension out of the proper range to fit the square-shaped graph boundary.
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characterized by a quantity called the skyrmion number s,
which is defined by [50]

s � 1

4π

ZZ
σ
n ⋅
�
∂n
∂x

×
∂n
∂y

�
dxdy, (B1)

in which n�x, y� is the vector field and σ is the area confining
the skyrmion. Geometrically, the skyrmion number counts
how many times the vector field wraps around the unit sphere.
Theoretically, the integration in Eq. (B1) always yields an in-
teger value of s for skyrmions. In our studies, the 3D vector
n�x, y� � n�r cos θ, r sin θ� is defined as the vector pointing
from the center to the surface of the Poincaré sphere, i.e.,
n � �nx , ny, nz� � �S1, S2, S3� at each spatial point �x, y�,
which is widely applied in the studies of optical skyrmions as-
sociated with vector beams [49,50] and is similarly used in the
SO coupling mechanisms in cavity exciton-polaritons [51].
With such definition, Eq. (B1) can be written as

s � q ⋅ m, (B2)

where q � �cos β�r�jr�rσ
r�0 �∕2 andm � �α�θ�jθ�2π

θ�0 �∕�2π� are in-
teger numbers indicating the times of wrapping in vertical and
horizontal directions, respectively. r � 0 and r � rσ indicate
the center and the boundary of the skyrmion area. β and α
are the coordinate angles of the Poincaré sphere (β is the angle
with the S3 axis, and α is the angle of the projection in the
S1–S2 plane with the S1 axis).

To demonstrate the topological properties of the optical sky-
rmions, we plotted the spatial distribution of 3D vector n for
the eigenstates in Figs. 1(d), 4(b), and 1(f ) in the main text as
typical examples, in Figs. 7(a)–7(c), respectively. The plot is
restricted within the region r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
≤ rσ � 0.65 μm,

with rσ herein corresponding to the spatial positions, where
S3 � −1, i.e., pure σ− circular polarization. The Stokes
parameters of these eigenstates reveal β�r � 0� � 0,
β�r � rσ� � π, α�θ � 2π� − α�θ � 0� � 4π, which is well
visualized by the color maps of Fig. 7, yielding q � −1 and
m � 2. For skyrmions with σ− circular polarization at the
center, such as those in Figs. 1(e) and 1(g), β reverses the sign,
and similarly q � 1 is obtained. Therefore, we get the conclu-
sion that the skyrmion numbers are s � �2 for the situations
of σ
 circular polarization at the spatial center.

The results are in agreement with the rule given in Ref. [49]
that the skyrmion number equals the OAM difference between
the two LG components. It is obvious from Eq. (5) that each
skyrmion is the coherent superposition of two LG modes with
opposite SAMs and an OAM difference of�2 (one with OAM
l � 0 and the other with OAM l � �2), yielding a skyrmion
number of �2.
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