• Journal of Semiconductors
  • Vol. 42, Issue 2, 024101 (2021)
Zhaowu Tang1, Chunsen Liu1、2, Senfeng Zeng1, Xiaohe Huang1, Liwei Liu1, Jiayi Li1, Yugang Jiang2, David Wei Zhang1, and Peng Zhou1
Author Affiliations
  • 1State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
  • 2School of Computer Science, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1088/1674-4926/42/2/024101 Cite this Article
    Zhaowu Tang, Chunsen Liu, Senfeng Zeng, Xiaohe Huang, Liwei Liu, Jiayi Li, Yugang Jiang, David Wei Zhang, Peng Zhou. Enhancement of refresh time in quasi-nonvolatile memory by the density of states engineering[J]. Journal of Semiconductors, 2021, 42(2): 024101 Copy Citation Text show less
    References

    [1] C Liu, X Yan, X Song et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 13, 404(2018).

    [2] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [3] C Qiu, F Liu, L Xu et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 361, 387(2018).

    [4] F Liu, C Qiu, Z Zhang et al. Dirac electrons at the source: breaking the 60-mV/decade switching limit. IEEE Trans Electron Devices, 65, 2736(2018).

    [5] F Liu, C Qiu, Z Zhang et al. First principles simulation of energy efficient switching by source density of states engineering. IEEE International Electron Devices Meeting (IEDM), 33(2018).

    [6] J Lyu, J Pei, Y Guo et al. A new opportunity for 2D van der Waals heterostructures: making steep-slope transistors. Adv Mater, 32, 1906000(2020).

    [7] W J Yu, S H Chae, S Y Lee et al. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater, 23, 1889(2011).

    [8] S Lee, E B Song, S Kim et al. Impact of gate work-function on memory characteristics in Al2O3/HfOx/Al2O3/graphene charge-trap memory devices. Appl Phys Lett, 100, 023109(2012).

    [9] S M Kim, E B Song, S Lee et al. Transparent and flexible graphene charge-trap memory. ACS Nano, 6, 7879(2012).

    [10] S Bertolazzi, D Krasnozhon, A Kis. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano, 7, 3246(2013).

    [11] M S Choi, G H Lee, Y J Yu et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun, 4, 1624(2013).

    [12] E Zhang, W Wang, C Zhang et al. Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 9, 612(2015).

    [13] Q A Vu, Y S Shin, Y R Kim et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat Commun, 7, 12725(2016).

    [14] G He, H Ramamoorthy, C P Kwan et al. Thermally assisted nonvolatile memory in monolayer MoS2 transistors. Nano Lett, 16, 6445(2016).

    [15] Y T Lee, H Kwon, J S Kim et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano, 9, 10394(2015).

    [16] X Hou, H Zhang, C Liu et al. Charge-trap memory based on hybrid 0D quantum dot-2D WSe2 structure. Small, 14, 1800319(2018).

    [17] A Mishra, A Janardanan, M Khare et al. Reduced multilayer graphene oxide floating gate flash memory with large memory window and robust retention characteristics. IEEE Electron Device Lett, 34, 1136(2013).

    [18] Y Ding, L Liu, J Li et al. A semi-floating memory with 535% enhancement of refresh time by local field modulation. Adv Funct Mater, 30, 1908089(2020).

    [19] J Li, L Liu, X Chen et al. Symmetric ultrafast writing and erasing speeds in quasi-nonvolatile memory via van der Waals heterostructures. Adv Mater, 31, 1808035(2019).

    [20] G Wu, B Tian, L Liu et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat Electron, 3, 43(2020).

    [21] C Liu, P Zhou. Memory Devices Based on Van der Waals Heterostructures. ACS Mater Lett, 2, 1101(2020).

    [22] J Liu, Z Huang, F Lai et al. Controllable growth of the graphene from millimeter-sized monolayer to multilayer on Cu by chemical vapor deposition. Nanoscale Res Lett, 10, 455(2015).

    [23] G P Dai, M H Wu, D K Taylor et al. Hybrid 3D graphene and aligned carbon nanofiber array architectures. RSC Adv, 2, 8965(2012).

    [24] Y Cao, Z Wang, Q Bian et al. Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Appl Phys Lett, 114, 133103(2019).

    [25] S Mouri, Y Miyauchi, K Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 13, 5944(2013).

    [26] G H Ahn, M Amani, H Rasool et al. Strain-engineered growth of two-dimensional materials. Nat Commun, 8, 608(2017).

    Zhaowu Tang, Chunsen Liu, Senfeng Zeng, Xiaohe Huang, Liwei Liu, Jiayi Li, Yugang Jiang, David Wei Zhang, Peng Zhou. Enhancement of refresh time in quasi-nonvolatile memory by the density of states engineering[J]. Journal of Semiconductors, 2021, 42(2): 024101
    Download Citation