• Journal of Semiconductors
  • Vol. 41, Issue 8, 081001 (2020)
Hanliu Zhao1, Xinghao Sun1, Zhengrui Zhu1, Wen Zhong1, Dongdong Song1, Weibing Lu2、3, and Li Tao1、2
Author Affiliations
  • 1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
  • 2Center for Flexible RF Technology, Southeast University, Nanjing 211189, China
  • 3State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 211189, China
  • show less
    DOI: 10.1088/1674-4926/41/8/081001 Cite this Article
    Hanliu Zhao, Xinghao Sun, Zhengrui Zhu, Wen Zhong, Dongdong Song, Weibing Lu, Li Tao. Physical vapor deposited 2D bismuth for CMOS technology[J]. Journal of Semiconductors, 2020, 41(8): 081001 Copy Citation Text show less
    References

    [1] S Zhang, M Xie, F Li et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 55, 1666(2016).

    [2] Z Zhu, D Tománek. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 112, 176802(2014).

    [3] J L Zhang, S Zhao, C Han et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 16, 4903(2016).

    [4] S Zhang, S Guo, Z Chen et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 47, 982(2018).

    [5] V Tran, R Soklaski, Y F Liang et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 89, 235319(2014).

    [6] J Qiao, X Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [7] L Li, Y Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [8] S M Beladi-Mousavi, M Pumera. 2D-pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chem Soc Rev, 47, 6964(2018).

    [9] J S Kim, Y Liu, W Zhu et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 5, 8989(2015).

    [10] G Pizzi, M Gibertini, E Dib et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 7, 12585(2016).

    [11] H L Chia, N M Latiff, R Gusmao et al. Cytotoxicity of shear exfoliated pnictogen (As, Sb, Bi) nanosheets. Chemistry, 25, 2242(2019).

    [12] S Zhang, Z Yan, Y Li et al. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed, 54, 3112(2015).

    [13] P Ares, F Aguilar-Galindo, D Rodríguez-San-Miguel et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 28, 6332(2016).

    [14] R Gusmao, Z Sofer, D Bousa et al. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 56, 14417(2017).

    [15] S H Kim, K H Jin, J Park et al. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci Rep, 6, 33193(2016).

    [16] Y M Koroteev, G Bihlmayer, J E Gayone et al. Strong spin-orbit splitting on bi surfaces. Phys Rev Lett, 93, 046403(2004).

    [17] F Reis, G Li, L Dudy et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 357, 287(2017).

    [18] T Hirahara, T Nagao, I Matsuda et al. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys Rev B, 75, 035422(2007).

    [19] T Hirahara, T Nagao, I Matsuda et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys Rev Lett, 97, 146803(2006).

    [20] P Hofmann. The surfaces of bismuth: Structural and electronic properties. Prog Surf Sci, 81, 191(2006).

    [21] J T Sun, H Huang, S L Wong et al. Energy-gap opening in a Bi110 nanoribbon induced by edge reconstruction. Phys Rev Lett, 109, 246804(2012).

    [22] C A Hoffman, J R Meyer, F J Bartoli et al. Semimetal-to-semiconductor transition in bismuth thin films. Phys Rev B, 48, 11431(1993).

    [23] C R Ast, H Hochst. Fermi surface of Bi(111) measured by photoemission spectroscopy. Phys Rev Lett, 87, 177602(2001).

    [24] D L Lu, S W Luo, S H Liu et al. Anomalous temperature-dependent Raman scattering of vapordeposited two-dimensional Bi thin films. J Phys Chem C, 122, 24459(2018).

    [25] Z Yang, Z Wu, Y Lyu et al. Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. Info Mat, 1, 98(2019).

    [26] D L Partin, J Heremans, D T Morelli et al. Growth and characterization of epitaxial bismuth films. Phys Rev B, 38, 3818(1988).

    [27] Y Liu, R E Allen. Electronic structure of the semimetals Bi and Sb. Phys Rev B, 52, 1566(1995).

    [28] L Li, C Tang, B Xia et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal, 9, 2902(2019).

    [29] Y Huang, C Zhu, S Zhang et al. Ultrathin bismuth nanosheets for stable Na-Ion batteries: Clarification of structure and phase transition by in situ observation. Nano Lett, 19, 1118(2019).

    [30] C Hao, F Wen, J Xiang. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv Funct Mater, 26, 2016(2016).

    [31] Y Xu, J Yuan, K Zhang. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 27, 1702211(2017).

    [32] B Radisavljevic, A Radenovic, J Brivio. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).

    [33] F Schwierz. Graphene transistors. Nat Nanotechnol, 5, 487(2010).

    [34]

    [35] M Wada, S Murakami, F Freimuth et al. Localized edge states in twodimensional topological insulators: ultrathin Bi films. Phys Rev B, 83, 121310(2011).

    [36] Y Lu, W Xu, M Zeng et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi (110). Nano Lett, 15, 80(2015).

    [37] Z Liu, C X Liu, Y S Wu et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first principles study. Phys Rev Lett, 107, 136805(2011).

    [38] C Y Wu, J C Han, L Sun et al. Effects of trigonal deformation on electronic structure and thermoelectric properties of bismuth. J Phys: Condens Matter, 30, 285504(2018).

    [39] Y Guo, F Pan, M Ye et al. Monolayer bismuthene–metal contacts: A theoretical study. ACS Appl Mater Interfaces, 9, 23128(2017).

    [40] C Y Wu, L Sun, J C Han et al. Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth. RSC Adv, 9, 40670(2019).

    [41] S Yaginuma, T Nagao, J T Sadowski et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf Sci, 601, 3593(2007).

    [42] X Liu, S Zhang, S Guo et al. Advances of 2D bismuth in energy sciences. Chem Soc Rev, 49, 263(2020).

    [43] E Akturk, O Uzengi Akturk, S Ciraci. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys Rev B, 94, 014115(2016).

    [44] J Lee, W C Tian, W L Wang et al. Two-dimensional pnictogen honeycomb lattice: structure, on-site spin-orbit coupling and spin polarization. Sci Rep, 5, 11512(2015).

    [45] M Y Liu, Y Huang, Q Y Chen et al. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv, 7, 39546(2017).

    [46] S B Pillai, S D Dabhi, P K Jha. Hydrogen evolution reaction and electronic structure calculation of two dimensional bismuth and its alloys. Int J Hydrogen Energ, 43, 21649(2018).

    [47] T Hu, X Hui, X Zhang et al. Nanostructured Bi grown on epitaxial graphene/SiC. J Phys Chem Lett, 9, 5679(2018).

    [48] H Huang, S L Wong, Y Wang et al. Scanning tunneling microscope and photoemission spectroscopy investigations of bismuth on epitaxial graphene on SiC(0001). J Phys Chem C, 118, 24995(2014).

    [49] Y Wang, K Chen, H Hao et al. Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale, 11, 2637(2019).

    [50] P Kumar, J Singh, C A Pandey. Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv, 3, 2313(2013).

    [51] N Han, Y Wang, H Yang et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun, 9, 1320(2018).

    [52] L Wang, C Wang, F Li et al. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun, 54, 38(2017).

    [53] E S Walker, S R Na, D Jung et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett, 16, 6931(2016).

    [54] C Zucchetti, M T Dau, F Bottegoni et al. Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films. Phy Rev B, 98, 184418(2018).

    [55] D Meyer, G Jnawali, H Hattab et al. Rapid onset of strain relief by massive generation of misfit dislocations in Bi(111)/Si(001) heteroepitaxy. Appl Phys Lett, 114, 081601(2019).

    [56] B C He, G Tian, J Gou et al. Structural and electronic properties of atomically thin bismuth on Au(111). Surf Sci, 679, 147(2019).

    [57] F Yang, L Miao, Z F Wang et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys Rev Lett, 109, 016801(2012).

    [58] F Song, J W Wells, Z Jiang et al. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite. ACS Appl Mater Interfaces, 7, 8525(2015).

    [59] T Nagao, J Sadowski, M Saito et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7. Phys Rev Lett, 93, 105501(2004).

    [60] J T Sadowski, T Nagao, S Yaginuma et al. Stability of the quasicubic phase in the initial stage of the growth of bismuth films on Si(111) -7 × 7. J Appl Phys, 99, 014904(2006).

    [61] X Wang, X Yang, N Shen et al. Atomistic insights into the growth of Bi (110) thin films on Cu (111) substrate. Appl Surf Sci, 481, 1449(2019).

    [62] S E Rodil, O Garcia-Zarco, E Camps et al. Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Films, 636, 384(2017).

    [63] A Dauscher, M Boffoue, B Lenoir et al. Unusual growth of pulsed laser deposited bismuth films on Si(100). Appl Surf Sci, 138, 188(1999).

    [64] K S Wu, M Y Chern. Temperature-dependent growth of pulsed-laser-deposited bismuth thin films on glass substrates. Thin Solid Films, 516, 3808(2008).

    [65] M Jankowski, D Kaminski, K Vergeer et al. Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate. Nanotechnology, 28, 155602(2017).

    [66] L Yang, Y X Zheng, S D Yang et al. Ellipsometric study on temperature dependent optical properties of topological bismuth film. Appl Surf Sci, 421, 899(2017).

    [67] R K Jaina, J Kaura, S Aroraa et al. Effects of oblique angle deposition on structural, electrical and wettability properties of Bi thin films grown by thermal evaporation. Appl Surf Sci, 463, 45(2019).

    [68] L Kumari, S J Lin, J H Lin et al. Effects of deposition temperature and thickness on the structural properties of thermal evaporated bismuth thin films. Appl Surf Sci, 253, 5931(2007).

    [69] N Z El-Sayed. Physical characteristics of thermally evaporated bismuth thin films. Vacuum, 80, 860(2006).

    [70] X F Qin, C Y Sui, L X Di. Influence of substrate temperature on the morphology and structure of bismuth thin films deposited by magnetron sputtering. Vacuum, 166, 316(2019).

    [71] X Duan, J Yang, W Zhu et al. Structure and electrical properties of bismuth thin films prepared by flash evaporation method. Mater Lett, 61, 4341(2007).

    [72] C M Bedoya-Hincapié, J Roche, E Restrepo-Parra et al. Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Rev chil ing, 23, 92(2015).

    [73] S A Stanley, C Stuttle, A J Caruana et al. An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition. J Phys D, 45, 435304(2012).

    [74] D H Kim, S H Lee, J K Kim et al. Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering. Appl Surf Sci, 252, 3525(2006).

    [75] M Takashiri, J Hamada. Bismuth antimony telluride thin films with unique crystal orientation by two-step method. J Alloy Compd, 683, 276(2016).

    [76] M Takashiri, K Imai, M Uyama et al. Comparison of crystal growth and thermoelectric properties of n-type Bi–Se–Te and p-type Bi–Sb–Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam. J Appl Phys, 115, 214311(2015).

    [77] N Kawakami, C L Lin, K Kawahara et al. Structural evolution of Bi thin films on Au(111) revealed by scanning tunneling microscopy. Phys Rev B, 96, 205402(2017).

    [78]

    [79] X Jing, Y Illarionov, E Yalon et al. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv Funct Mater, 30, 1901971(2019).

    [80] W Zhou, J Chen, P Bai et al. Two-dimensional pnictogen for field-effect transistors. Research, 2019, 1046329(2019).

    [81] J Jeon, S K Jang, S M Jeon et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 7, 1688(2015).

    [82] Z Yang, J Hao, S Yuan et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv Mater, 27, 3748(2015).

    [83] L Tao, E Cinquanta, D Chiappe et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol, 10, 227(2015).

    [84] C Grazianetti, E Cinquanta, L Tao et al. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano, 11, 3376(2017).

    [85] R Bhuvaneswari, V Nagarajan, R Chandiramouli. Electronic properties of novel bismuthene nanosheets with adsorption studies of G-series nerve agent molecules – a DFT outlook. Phys Lett A, 383, 125975(2019).

    [86] J P Maria, V Nagarajan, R Chandiramouli. Benzyl chloride and chlorobenzene adsorption studies on bismuthene nanosheet: A DFT study. J Inorg Organomet Polym Mater, 30, 1888(2019).

    [87] P Snehha, V Nagarajan, R Chandiramouli. Novel bismuthene nanotubes to detect NH3, NO2 and PH3 gas molecules – A first-principles insight. Chem Phys Lett, 712, 102(2018).

    [88] J D Yao, J M Shao, G W Yang. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Sci Rep, 5, 12320(2015).

    [89] Q Zhou, D Lu, H Tang et al. Self-powered ultra-broadband and flexible photodetectors based on the bismuth films by vapor deposition. ACS Appl Electron Mater, 2, 1254(2020).

    [90] L Lu, W Wang, L Wu et al. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics, 4, 2852(2017).

    [91] T Chai, X Li, T Feng et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 10, 17617(2018).

    [92] L D Hicks, T C Harman, M S Dresselhaus. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett, 63, 3230(1993).

    [93] L Cheng, H Liu, X Tan et al. Thermoelectric properties of a monolayer bismuth. J Phys Chem C, 118, 904(2014).

    [94] P Guo, X Li, T Chai et al. Few-layer bismuthene for robust ultrafast photonics in C-band optical communications. Nanotechnology, 30, 354002(2019).

    [95] H K Lyeo, D G Cahill. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B, 73, 144301(2006).

    [96] C F Gallo, B S Chandrasekhar, P H Sutter. Transport properties of bismuth single crystals. J Appl Phys, 34, 144(1963).

    [97] C N Liao, S W Kuo. Thermoelectric characterization of sputter-deposited Bi/Te bilayer thin films. J Vac Sci Technol A, 23, 559(2005).

    [98] S I Kim, K H Lee, H A Mun et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 348, 109(2015).

    [99] S K Mishra, S Satpathy, O Jepsen. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys: Condens Matter, 9, 461(1997).

    [100] Y Du, K F Cai, H Li et al. Influence of sintering temperature on the microstructure and thermoelectric properties of n-type Bi2Te3−XSeX nanomaterials. J Electron Mater, 40, 518(2011).

    [101] L D Hicks, M S Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B, 47, 12727(1993).

    [102] L D Hicks, M S Dresselhaus. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B, 47, 16631(1993).

    [103] C Y Wu, L Sun, H R Gong et al. Influence of internal displacement on band structure, phase transition, and thermoelectric properties of bismuth. J Mater Sci, 54, 6347(2019).

    [104] Y Xu, Z Gan, S C Zhang. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys Rev Lett, 112, 226801(2014).

    [105] V D Das, N Soundararajan. Size and temperature effects on the Seebeck coefficient of thin bismuth films. Phys Rev B, 35, 5990(1987).

    [106] S Cho, A DiVenere, G K Wong et al. Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun, 102, 673(1997).

    [107] H Du, X Sun, X Liu et al. Surface Landau levels and spin states in bismuth (111) ultrathin films. Nat Commun, 7, 10814(2016).

    [108] J Gou, L Kong, X He et al. The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions. Sci Adv, 6, eaba2773(2020).

    [109] F Y Yang, K Liu, K Hong et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science, 284, 1335(1999).

    [110] N Wang, L Zhang, T Wang et al. Origin of linear magnetoresistance in polycrystalline Bi films. J Appl Phys, 127, 025105(2020).

    [111] N Wang, Y Qi. Enhanced transport properties of Bi thin film by preferential current flow pathways in low angle grain boundaries. Vacuum, 169, 108874(2019).

    [112] Z X Xu, J M Yan, M Xu et al. Multistate resistance switching in Bi/PMN–PT(111) heterostructures by electric and magnetic field. J Mater Sci-Mater El, 31, 3585(2020).

    [113] X Kong, Q Liu, C Zhang et al. Elemental two-dimensional nanosheets beyond graphene. Chem Soc Rev, 46, 2127(2017).

    [114] S Guo, Y Zhang, Y Ge et al. 2D V-V binary materials: Status and challenges. Adv Mater, 31, 1902352(2019).

    [115] Y Ueda, N H Duy Khang, K Yao et al. Epitaxial growth and characterization of Bi1–XSbX spin Hall thin films on GaAs(111)A substrates. Appl Phys Lett, 110, 062401(2017).

    [116] S Cho, A DiVenere, G K Wong et al. Transport properties of Bi1–XSbX alloy thin films grown on CdTe(111)B. Phys Rev B, 59, 10691(1999).

    [117] G E Smith, R Wolfe. Thermoelectric properties of bismuth-antimony alloys. J Appl Phys, 33, 841(1962).

    [118] V Linseis, F Völklein, H Reith et al. Thickness and temperature dependent thermoelectric properties of Bi87Sb13nanofilms measured with a novel measurement platform. Semicond Sci Technol, 33, 085014(2018).

    [119] C Y Wu, L Sun, J C Han et al. Band structure, phonon spectrum, and thermoelectric properties of β-BiAs and β-BiSb monolayers. J Mater Chem C, 8, 581(2020).

    [120] H J Zhang, C X Liu, X L Qi et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 5, 438(2009).

    [121] A M Adam, A Elshafaie, A A Mohamed et al. Thermoelectric properties of Te doped bulk Bi2Se3 system. Mater Res Express, 5, 035514(2018).

    [122] Z H Ge, Y H Ji, Y Qiu et al. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Mater, 143, 90(2018).

    [123] F Zahid, R Lake. Thermoelectric properties of Bi2Te3 atomic quintuple thin films. Appl Phys Lett, 97, 212102(2010).

    [124] D L Guo, C G Hu. Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study. Appl Surf Sci, 321, 525(2014).

    [125] A Sharma, A K Srivastava, T D Senguttuvan et al. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions. Sci Rep, 7, 17911(2017).

    [126] F Wang, L Li, W Huang et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater, 28, 1802707(2018).

    Hanliu Zhao, Xinghao Sun, Zhengrui Zhu, Wen Zhong, Dongdong Song, Weibing Lu, Li Tao. Physical vapor deposited 2D bismuth for CMOS technology[J]. Journal of Semiconductors, 2020, 41(8): 081001
    Download Citation