• Infrared and Laser Engineering
  • Vol. 49, Issue 5, 20190491 (2020)
Xie Jing1、2、*, Li Xiaojuan1、2, Zhang Yan1、2, and Li Xiangyang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla20190491 Cite this Article
    Xie Jing, Li Xiaojuan, Zhang Yan, Li Xiangyang. Design of ultra-low-power readout circuit for 1 024×1 024 UV AlGaN focal plane arrays[J]. Infrared and Laser Engineering, 2020, 49(5): 20190491 Copy Citation Text show less

    Abstract

    A novel ultra- low-power readout integrated circuit (ROIC) for 1 024×1 024 ultraviolet (UV) AlGaN focal plane arrays (FPA) with 18 μm-pitch was presented. In order to optimize power consumption for UVFPA readout circuit these methods were adopted, which including single-terminal amplifier under subthreshold region as CTIA amplifier, common current source load for source follow (SF) buffer in column pixels and level shift circuits, and time-sharing tail current source for column buffer. The smallest operational current of CTIA in pixel unit is only 8.5 nA with 3.3 V power supply by using single-terminal amplifier. The ROIC has been fabricated in SMIC 0.18 μm 1P6M mixed signal process and also achieved better performances with the novel design of bias current adjustable. Furthermore, the overall power consumption of the chip is 67.3 mW at 2 MHz in 8-outputs mode by the above methods according to the experimental results.
    ${I_{\rm{D}}} = I_{{\rm{DO}}}\frac{W}{L}\exp \left( {\frac{{{{{V}}_{{\rm{GS}}}} - {{{V}}_{{\rm{TH}}}}}}{{{\rm{\eta }}{{{V}}_{\rm{T}}}}}} \right)\left[ {1 - {\rm{exp}}\left( {\frac{{ - {{{V}}_{{\rm{DS}}}}}}{{{{{V}}_{\rm{T}}}}}} \right)} \right]$ (1)

    View in Article

    ${\eta} \approx \frac{{{{{C}}_{{\rm{ox}}}} + {{{C}}_{{\rm{si}}}} + {{{C}}_{{\rm{ss}}}}}}{{{{{C}}_{{\rm{ox}}}}}}$ (2)

    View in Article

    ${{{V}}_{\rm{T}}} = \frac{{{{kT}}}}{{{q}}}$ (3)

    View in Article

    $\begin{split} {{{g}}_{\rm{m}}} =\;& \frac{{{\text{∂}}{{{I}}_{\rm{D}}}}}{{{\text{∂}}{{{V}}_{{\rm{GS}}}}}} = {{{I}}_{{\rm{DO}}}}\frac{{{W}}}{{{L}}}\exp \left( {\frac{{{{{V}}_{{\rm{GS}}}} - {{{V}}_{{\rm{TH}}}}}}{{{\rm{\eta }}{{{V}}_{\rm{T}}}}}} \right) \times\\ & \left[ {1 - {\rm{exp}}\left( {\frac{{ - {{{V}}_{{\rm{DS}}}}}}{{{{{V}}_{\rm{T}}}}}} \right)} \right]\frac{1}{{{\rm{\eta }}{{{V}}_{\rm{T}}}}} = {{{I}}_{\rm{D}}}\frac{1}{{{\rm{\eta }}{{{V}}_{\rm{T}}}}} \end{split}$ (4)

    View in Article

    $\frac{{{{{g}}_{\rm{m}}}}}{{{{{I}}_{{\rm{DS}}}}}} \approx \frac{1}{{{\rm{\eta }}{{{V}}_{\rm{T}}}}}$ (5)

    View in Article

    ${I} = \frac{1}{2}{\rm{\mu }}{{{C}}_{{\rm{ox}}}}\frac{{{W}}}{{{L}}}{\left( {{{{V}}_{{\rm{gs}}}} - {{{V}}_{{\rm{TH}}}}} \right)^2}\left( {1 + {\rm{\lambda }}{{{V}}_{{\rm{ds}}}}} \right)$ (6)

    View in Article

    $\begin{split} {P_{\rm total}} = \;& M \times N \times {P_{\rm pixel}} + M \times N \times {P_{\rm sf}} + M \times\\ & {P_{\rm column}} + n \times {P_{\rm output}} + {P_{\rm bias}} + {P_{\rm logic}}= \\ & M \times N \times {P_{\rm pixel}} + M \times N \times {P_{\rm sf}} + M \times \\ & \left( {{P_{\rm ls}} + {P_{\rm cb}}} \right) + n \times {P_{\rm output}} + {P_{\rm bias}} + {P_{\rm logic}} \end{split}$ (7)

    View in Article

    $\begin{split} {P_{\rm total}} =\; & M \times N \times {P_{\rm pixel}} + M \times {P_{\rm sf}} + M \times\\ &\left( {{P_{\rm ls}} + {P_{\rm cb}}} \right) + n \times {P_{\rm output}} + {P_{\rm bias}} + {P_{\rm logic}} = \\ &M \times N \times {P_{\rm pixel}} + M \times \left( {{P_{\rm common}} + {P_{\rm cb}}} \right) + n \times \\ &{P_{\rm output}} + {P_{\rm bias}} + {P_{\rm logic}} \end{split}$ (8)

    View in Article

    Xie Jing, Li Xiaojuan, Zhang Yan, Li Xiangyang. Design of ultra-low-power readout circuit for 1 024×1 024 UV AlGaN focal plane arrays[J]. Infrared and Laser Engineering, 2020, 49(5): 20190491
    Download Citation