• Photonics Research
  • Vol. 10, Issue 2, 475 (2022)
Gao-Feng Jiao1, Keye Zhang1, L. Q. Chen1、5, Chun-Hua Yuan1、*, and Weiping Zhang2、3、4
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China
  • 2School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5e-mail: lqchen@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.445858 Cite this Article Set citation alerts
    Gao-Feng Jiao, Keye Zhang, L. Q. Chen, Chun-Hua Yuan, Weiping Zhang. Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 2022, 10(2): 475 Copy Citation Text show less
    References

    [1] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, M. Zimmermann. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys., 52, 341-392(1980).

    [2] M. F. Bocko, R. Onofrio. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress. Rev. Mod. Phys., 68, 755-799(1996).

    [3] V. B. Braginsky, F. Y. Khalili. Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys., 68, 1-11(1996).

    [4] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, J. D. Teufel. Quantum non-demolition measurement of a nonclassical state of a massive object. Phys. Rev. X, 5, 041037(2015).

    [5] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, A. Schliesser. Measurement-based quantum control of mechanical motion. Nature, 563, 53-58(2018).

    [6] D. B. Hume, T. Rosenband, D. J. Wineland. High-fidelity adaptive qubit detection through repetitive quantum non-demolition measurements. Phys. Rev. Lett., 99, 120502(2007).

    [7] F. Wolf, Y. Wan, J. C. Heip, F. Gebert, C. Shi, P. O. Schmidt. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature, 530, 457-460(2016).

    [8] M. Raha, S. Chen, C. M. Phenicie, S. Ourari, A. M. Dibos, J. D. Thompson. Optical quantum non-demolition measurement of a single rare earth ion qubit. Nat. Commun., 11, 1605(2020).

    [9] X. Xue, B. D’Anjou, T. F. Watson, D. R. Ward, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, W. A. Coish, L. M. K. Vandersypen. Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X, 10, 021006(2020).

    [10] S. Hacohen-Gourgy, L. S. Martin, E. Flurin, V. V. Ramasesh, K. B. Whaley, I. Siddiqi. Quantum dynamics of simultaneously measured non-commuting observables. Nature, 538, 491-494(2016).

    [11] U. Vool, S. Shankar, S. O. Mundhada, N. Ofek, A. Narla, K. Sliwa, E. Zalys-Geller, Y. Liu, L. Frunzio, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret. Continuous quantum non-demolition measurement of the transverse component of a qubit. Phys. Rev. Lett., 117, 133601(2016).

    [12] P. Grangier, J. A. Levenson, J.-P. Poizat. Quantum non-demolition measurements in optics. Nature, 396, 537-542(1998).

    [13] A. Reiserer, S. Ritter, G. Rempe. Non-destructive detection of an optical photon. Science, 342, 1349-1351(2013).

    [14] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, Y. Nakamura. Quantum non-demolition detection of an itinerant microwave photon. Nat. Phys., 14, 546-549(2018).

    [15] N. Imoto, H. A. Haus, Y. Yamamoto. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A, 32, 2287-2292(1985).

    [16] M. J. Holland, D. F. Walls, P. Zoller. Quantum nondemolition measurements of photon number by atomic beam deflection. Phys. Rev. Lett., 67, 1716-1719(1991).

    [17] S. R. Friberg, S. Machida, Y. Yamamoto. Quantum-nondemolition measurement of the photon number of an optical soliton. Phys. Rev. Lett., 69, 3165-3168(1992).

    [18] K. Jacobs, P. Tombesi, M. J. Collett, D. F. Walls. Quantum-nondemolition measurement of photon number using radiation pressure. Phys. Rev. A, 49, 1961-1966(1994).

    [19] Y. Sakai, R. J. Hawkins, S. R. Friberg. Soliton-collision interferometer for the quantum nondemolition measurement of photon number: numerical results. Opt. Lett., 15, 239-241(1990).

    [20] P. Kok, H. Lee, J. P. Dowling. Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A, 66, 063814(2002).

    [21] C. C. Gerry, T. Bui. Quantum non-demolition measurement of photon number using weak nonlinearities. Phys. Lett. A, 372, 7101-7104(2008).

    [22] W. J. Munro, K. Nemoto, R. G. Beausoleil, T. P. Spiller. High-efficiency quantum-nondemolition single-photonnumber-resolving detector. Phys. Rev. A, 71, 033819(2005).

    [23] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, S. Haroche. Seeing a single photon without destroying it. Nature, 400, 239-242(1999).

    [24] Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, L. Yang. Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity. Opt. Express, 16, 21462-21475(2008).

    [25] M. Ludwig, A. H. Safavi-Naeini, O. Painter, F. Marquardt. Enhanced quantum nonlinearities in a two-mode optomechanical system. Phys. Rev. Lett., 109, 063601(2012).

    [26] D. Malz, J. I. Cirac. Nondestructive photon counting in waveguide QED. Phys. Rev. Res., 2, 033091(2020).

    [27] J. Liu, H. T. Chen, D. Segal. Quantum nondemolition photon counting with a hybrid electromechanical probe. Phys. Rev. A, 102, 061501(2020).

    [28] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693-1708(1981).

    [29] B. Yurke, S. L. McCall, J. R. Klauder. SU(2) and SU(1,1) interferometers. Phys. Rev. A, 33, 4033-4054(1986).

    [30] L. Pezzé, A. Smerzi. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett., 100, 073601(2008).

    [31] J. P. Dowling. Quantum optical metrology-the lowdown on high-N00N states. Contemp. Phys., 49, 125-143(2008).

    [32] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, W. Zhang. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 5, 3049(2014).

    [33] D. Li, B. T. Gard, Y. Gao, C.-H. Yuan, W. Zhang, H. Lee, J. P. Dowling. Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection. Phys. Rev. A, 94, 063840(2016).

    [34] B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C. Hermann-Avigliano, K. M. Jones, P. D. Lett. Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer. Optica, 4, 752-756(2017).

    [35] M. Manceau, G. Leuchs, F. Khalili, M. Chekhova. Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer. Phys. Rev. Lett., 119, 223604(2017).

    [36] W. Du, J. Kong, G. Bao, P. Yang, J. Jia, S. Ming, C.-H. Yuan, J. F. Chen, Z. Y. Ou, M. W. Mitchell, W. Zhang. SU(2)-in-SU(1,1) nested interferometer for high sensitivity, loss-tolerant quantum metrology. Phys. Rev. Lett., 128, 033601(2022).

    [37] K. Zheng, M. Mi, B. Wang, L. Xu, L. Hu, S. Liu, Y. Lou, J. Jing, L. Zhang. Quantum-enhanced stochastic phase estimation with the SU(1,1) interferometer. Photon. Res., 8, 1653-1661(2020).

    [38] J. Jacobson, G. Björk, Y. Yamamoto. Quantum limit for the atom-light interferometer. Appl. Phys. B, 60, 187-191(1995).

    [39] G. Campbell, M. Hosseini, B. M. Sparkes, P. K. Lam, B. C. Buchler. Time-and frequency-domain polariton interference. New J. Phys., 14, 033022(2012).

    [40] C. Qiu, S. Chen, L. Q. Chen, B. Chen, J. Guo, Z. Y. Ou, W. Zhang. Atom-light superposition oscillation and Ramsey-like atom-light interferometer. Optica, 3, 775-780(2016).

    [41] B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, W. Zhang. Atom-light hybrid interferometer. Phys. Rev. Lett., 115, 043602(2015).

    [42] H.-M. Ma, D. Li, C.-H. Yuan, L. Q. Chen, Z. Y. Ou, W. Zhang. SU(1,1)-type light-atom-correlated interferometer. Phys. Rev. A, 92, 023847(2015).

    [43] Z.-D. Chen, C.-H. Yuan, H.-M. Ma, D. Li, L. Q. Chen, Z. Y. Ou, W. Zhang. Effects of losses in the atom-light hybrid SU(1,1) interferometer. Opt. Express, 24, 17766-17778(2016).

    [44] S. S. Szigeti, R. J. Lewis-Swan, S. A. Haine. Pumped-up SU(1,1) interferometry. Phys. Rev. Lett., 118, 150401(2017).

    [45] S. Y. Chen, L. Q. Chen, Z. Y. Ou, W. Zhang. Quantum non-demolition measurement of photon number with atom-light interferometers. Opt. Express, 25, 31827-31839(2017).

    [46] D. H. Fan, S. Y. Chen, Z. F. Yu, K. Zhang, L. Q. Chen. Quality estimation of non-demolition measurement with lossy atom-light hybrid interferometers. Opt. Express, 28, 9875-9884(2020).

    [47] M. J. Holland, M. J. Collett, D. F. Walls, M. D. Levenson. Nonideal quantum nondemolition measurements. Phys. Rev. A, 42, 2995-3005(1990).

    [48] M. Dabrowski, R. Chrapkiewicz, W. Wasilewski. Hamiltonian design in readout from room-temperature Raman atomic memory. Opt. Express, 22, 26076-26091(2014).

    [49] J. Nunn, J. H. D. Munns, S. Thomas, K. T. Kaczmarek, C. Qiu, A. Feizpour, E. Poem, B. Brecht, D. J. Saunders, P. M. Ledingham, D. V. Reddy, M. G. Raymer, I. A. Walmsley. Theory of noise suppression in Λ-type quantum memories by means of a cavity. Phys. Rev. A, 96, 012338(2017).

    [50] S. E. Thomas, T. M. Hird, J. H. D. Munns, B. Brecht, D. J. Saunders. Raman quantum memory with built-in suppression of four-wave-mixing noise. Phys. Rev. A, 100, 033801(2019).

    [51] S. H. Autler, C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev., 100, 703-722(1955).

    [52] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041-1093(2010).

    [53] W. Heitler. The Quantum Theory of Radiation(1954).

    [54] G.-F. Jiao, K. Zhang, L. Q. Chen, W. Zhang, C.-H. Yuan. Nonlinear phase estimation enhanced by an actively correlated Mach-Zehnder interferometer. Phys. Rev. A, 102, 033520(2020).

    [55] M. Tsang. Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett., 102, 253601(2009).

    [56] T. J. Proctor, P. A. Knott, J. A. Dunningham. Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett., 120, 080501(2018).

    [57] T. Baumgratz, A. Datta. Quantum enhanced estimation of a multidimensional field. Phys. Rev. Lett., 116, 030801(2016).

    Gao-Feng Jiao, Keye Zhang, L. Q. Chen, Chun-Hua Yuan, Weiping Zhang. Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 2022, 10(2): 475
    Download Citation