• Photonics Research
  • Vol. 10, Issue 2, 475 (2022)
Gao-Feng Jiao1, Keye Zhang1, L. Q. Chen1、5, Chun-Hua Yuan1、*, and Weiping Zhang2、3、4
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China
  • 2School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5e-mail: lqchen@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.445858 Cite this Article Set citation alerts
    Gao-Feng Jiao, Keye Zhang, L. Q. Chen, Chun-Hua Yuan, Weiping Zhang. Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 2022, 10(2): 475 Copy Citation Text show less

    Abstract

    Quantum non-demolition (QND) measurement is an important tool in the fields of quantum information processing and quantum optics. The atom-light hybrid interferometer is of great interest due to its combination of an atomic spin wave and an optical wave, which can be utilized for photon number QND measurement via the AC-Stark effect. In this paper, we present an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer, and theoretically study QND measurement of the photon number. Compared to the traditional SU(2) interferometer, the signal-to-noise ratio in a balanced case is improved by a gain factor of the nonlinear Raman process (NRP) in this proposed interferometer. Furthermore, the condition of high-quality QND measurement is analyzed. In the presence of losses, the measurement quality is reduced. We can adjust the gain parameter of the NRP in the readout stage to reduce the impact due to losses. Moreover, this scheme is a multiarm interferometer, which has the potential of multiparameter estimation with many important applications in the detection of vector fields, quantum imaging, and so on.
    H^LRP=iΩa^WS^a+H.c.,

    View in Article

    a^W(out)=a^W(in)cos(|Ω|τr)+S^a(in)sin(|Ω|τr),

    View in Article

    H^NRP=iηApa^SS^a+H.c.,

    View in Article

    S^a(out)=GS^a(in)+geiθa^S(in),a^S(out)=Ga^S(in)+geiθS^a(in),

    View in Article

    S^a(0)=G1S^a(in)+g1eiθ1a^S(in),a^S(1)=G1a^S(in)+g1eiθ1S^a(in).

    View in Article

    S^a(3)=tS^a(0)+ra^W(0),a^W(2)=ta^W(0)+rS^a(0),

    View in Article

    S^a(out)=G2S^a(3)+g2eiθ2a^S(1),a^S(out)=G2a^S(1)+g2eiθ2S^a(3).

    View in Article

    a^S(out)=Aa^S(in)+BS^a(in)+Ca^W(0),S^a(out)=Da^S(in)+ES^a(in)+Fa^W(0),

    View in Article

    A=G2G1+g2g1ei(θ2θ1)t*,B=G2g1eiθ1+G1g2eiθ2t*,D=G1g2eiθ2+G2g1eiθ1t,E=g2g1ei(θ2θ1)+G2G1t,C=g2eiθ2r*,F=G2r.

    View in Article

    ϕAC=κn^b,

    View in Article

    R=X^S(out)2Δ2X^S(out),

    View in Article

    X^S(out)=a^S(out)+a^S(out)=g2Nα1/2[cos(θ2θαϕ)cos(θ2θα)],

    View in Article

    Δ2X^S(out)=G22G12+G22g12+g22(1cosϕ)/2+g22g12(1+cosϕ)/2+G12g22(1+cosϕ)/2+2G2G1g2g1cos(θ2θ1ϕ)+2G2G1g2g1cos(θ2θ1).

    View in Article

    Rg2κ2Nαnb2.

    View in Article

    CSinSout2=|SinSoutSinSout|2Δ2SinΔ2Sout,

    View in Article

    CSinPout2=|SinPoutSinPout|2Δ2SinΔ2Pout,

    View in Article

    CSoutPout2=|SoutPoutSoutPout|2Δ2SoutΔ2Pout,

    View in Article

    Δ2Sin=(Sin)2Sin2,Δ2Sout=(Sout)2Sout2,Δ2Pin=(Pin)2Pin2,Δ2Pout=(Pout)2Pout2,

    View in Article

    C2=|N^(in)X^S(out)N^(in)X^S(out)|2Δ2N^(in)Δ2X^S(out).

    View in Article

    N^(in)=Nβ,Δ2N^(in)=Nβ,X^S(out)=g2κNα1/2Nβ,N^(in)X^S(out)=g2κNα1/2Nβ(Nβ+1),Δ2X^S(out)=(G2G1g2g1)2+(G2g1G1g2)2+g22κ2NαNβ+G12g22κ2Nβ(Nβ+1)/2.

    View in Article

    C2=11+(G2G1g2g1)2+(G2g1G1g2)2g22κ2NαNβ+G12(Nβ+1)2Nα.

    View in Article

    a^W,l(1)=η1a^W(1)+1η1V^1,

    View in Article

    a^S,l(1)=η2a^S(1)+1η2V^2,

    View in Article

    S^a,l(2)=S^a(2)eΓ1τ1+F^1,

    View in Article

    S^a,l(3)=S^a(3)eΓ2τ2+F^2,

    View in Article

    a^S,l(out)=a^S(in)A+S^a(in)B+a^W(0)C+V^1D+V^2E+F^1F+F^2G,

    View in Article

    A=[η2G2G1+g2g1ei(θ2θ1)(eΓ1τ1eiϕ+η1)eΓ2τ2/2],B=[η2G2g1eiθ1+G1g2eiθ2(eΓ1τ1eiϕ+η1)eΓ2τ2/2],C=g2eiθ2(eΓ1τ1eiϕη1)eΓ2τ2/2,D=g2eiθ21η1eΓ2τ2/2,E=G21η2,F=g2eiθ2eΓ2τ2/2,G=g2eiθ2.

    View in Article

    X^S(out)l=g2eΓ1τ1eΓ2τ2κNα1/2Nβ,

    View in Article

    N^(in)X^S(out)l=g2eΓ1τ1eΓ2τ2κNα1/2Nβ(Nβ+1),

    View in Article

    Δ2X^S(out)l=(η2G2G1g2g1eΓ1τ1eΓ2τ2/2g2g1eΓ2τ2η1/2)2+(η2G2g1G2g2eΓ1τ1eΓ2τ2/2G1g2eΓ2τ2η1/2)2+g22[(1e2Γ1τ1)e2Γ2τ2/2+(1e2Γ2τ2)]+g22(2g12+1)κ2Nβ(Nβ+1)e2Γ1τ1e2Γ2τ2/4+g22κ2Nβ[Nα+(Nβ+1)/4]e2Γ1τ1e2Γ2τ2+(g2eΓ2τ2η1/2g2eΓ1τ1eΓ2τ2/2)2+g22(1η1)e2Γ2τ2/2+G22(1η2),

    View in Article

    Gao-Feng Jiao, Keye Zhang, L. Q. Chen, Chun-Hua Yuan, Weiping Zhang. Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer[J]. Photonics Research, 2022, 10(2): 475
    Download Citation