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Quantum non-demolition (QND) measurement is an important tool in the fields of quantum information
processing and quantum optics. The atom-light hybrid interferometer is of great interest due to its combination
of an atomic spin wave and an optical wave, which can be utilized for photon number QND measurement via the
AC-Stark effect. In this paper, we present an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer, and
theoretically study QNDmeasurement of the photon number. Compared to the traditional SU(2) interferometer,
the signal-to-noise ratio in a balanced case is improved by a gain factor of the nonlinear Raman process (NRP)
in this proposed interferometer. Furthermore, the condition of high-quality QND measurement is analyzed. In
the presence of losses, the measurement quality is reduced. We can adjust the gain parameter of the NRP in the
readout stage to reduce the impact due to losses. Moreover, this scheme is a multiarm interferometer, which has
the potential of multiparameter estimation with many important applications in the detection of vector fields,
quantum imaging, and so on. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.445858

1. INTRODUCTION

Quantummeasurement takes place at the interface between the
quantum world and macroscopic reality. According to quantum
mechanics, as soon as we observe a system, we actually perturb
it, and such perturbation cannot be reduced to zero; instead,
there is a fundamental limit given by the Heisenberg uncer-
tainty relation. Quantum non-demolition (QND) is motivated
to get as close as possible to this limit [1–3]. In QND measure-
ment, a signal observable of the measured system is coupled
to a readout observable of a probe system through an interac-
tion, so that the information about the measured quantity can
be obtained indirectly by the direct measurement of the readout
observable. The key issue is to design the measurement scheme
in which the back action noise is transferred to the other
unmeasured conjugate observable without being coupled back
to the quantity of interest. The QND measurement was
studied in a variety of quantum systems, including mechanical
oscillators [4,5], trapped ions [6,7], solid-state spin qubits
[8,9], circuit quantum electrodynamics [10,11], and pho-
tons [12–14].

In the quantum optics community, Imoto et al. [15] pro-
posed an optical interferometer for a QND measurement
scheme of the photon number using the optical Kerr effect,
in which the cross-Kerr interaction encodes the photon number
of the signal state onto a phase shift of the probe state.
Subsequently, some works on photon number QND measure-
ment were studied [16–21]. However, the main obstacles to
optical QND measurement using cross-phase modulation
based on third-order nonlinear susceptibilities χ�3� are the small
values of nonlinearity in the available media and the absorption
of photons. Munro et al. [22] presented an implementation of
the QND measurement scheme with the required nonlinearity
provided by the giant Kerr effect achievable with AC-Stark
electromagnetic transparency. In addition, schemes using cavity
or circuit quantum electrodynamical systems have enabled pho-
ton number QND measurements that do not rely on the
material nonlinearity through strong light–matter interactions
[23–27].

Interferometric measurements allow for highly sensitive de-
tection of any small changes that induce an optical phase shift.
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Different kinds of quantum interferometers have been pro-
posed for phase measurement [28–37]. The phase sensitivity
of the SU(2) interferometer with coherent state input, such
as the Michelson or Mach–Zehnder interferometer, is limited
by the shot noise limit. When the unused port of the interfer-
ometer is fed with a squeezed state, the SU(2) interferometer
can beat this limit [28]. In contrast to the SU(2) interferometer,
the SU(1,1) nonlinear interferometer, which replaces the beam
splitters in the SU(2) interferometer with nonlinear gain media,
is a fundamentally different type of interferometric detector
[29], in which quantum correlations are generated within
the interferometer, and the phase sensitivity can, in principle,
approach the Heisenberg limit.

Recently, using the coherent mixing of an optical wave and
an atomic spin wave, the atom-light hybrid interferometer has
been proposed and studied [38–44]. Similarly, there are two
types of atom-light hybrid interferometers, which have also
been demonstrated experimentally. One is an SU(2)-type
atom-light hybrid interferometer [40], where the linear
Raman processes (LRPs) replace the beam splitters in the
SU(2) linear interferometer to realize linear superposition of
the atomic wave and optical wave. The other is an SU(1,1)-type
atom-light hybrid interferometer [41], where the nonlinear
Raman processes (NRPs) realize the atomic wave and optical
wave splitting and recombination. The atom-light hybrid inter-
ferometer has drawn considerable interest because it is sensitive
to both optical and atomic phase shifts. Resorting to an AC-
Stark effect for the atomic phase change, the atom-light hybrid
interferometer can be applied to QNDmeasurement of photon
numbers [45,46]. Further developing methods to improve
measurement procision is always desired for the innovation
of interferometers.

In this paper, we present an SU(1,1)-SU(2)-concatenated
atom-light hybrid interferometer, which is a combination of
SU(2)- and SU(1,1)-type atom-light hybrid interferometers.
The AC-Stark effect encodes the photon number of the signal
light onto a phase shift of the atomic spin wave, so that the
problem of detecting photon numbers is translated into the
problem of detecting the atomic phase shift. Thus we theoreti-
cally analyze the SNR of the interferometer for precision mea-
surement of the phase shift to examine the performance of this
scheme as a QND measurement. An ideal QND measurement
can be verified by a perfect correlation between the signal light
and the probe system [47]. Here we estimate the quality of
QND measurement using the criteria in Ref. [47], and the
condition for a perfect correlation is given. In the presence
of losses, the measurement quality is reduced. However, we
can adjust the gain parameter of the NRP in the readout stage
to reduce the impact due to losses.

Our scheme can be thought of as inserting an SU(2)-type
atom-light hybrid interferometer into one of the arms of the SU
(1,1)-type atom-light hybrid interferometer. Compared to a
conventional SU(1,1) interferometer, the number of phase-
sensing particles is further increased due to input field â�0�W .
In the previous scheme [45], a strong stimulated Raman pro-
cess could indeed be used to excite most of the atoms to the jmi
state to improve the number of phase-sensing particles.
However, this will produce additional nonlinear effects and

noise light fields [48–50]. Therefore, in the current scheme,
first a spontaneous Raman process is used, and then an LRP
is used to generate the Rabi-like superposition oscillation be-
tween light and the atom. By controlling the interaction time,
more atoms can be prepared to the jmi state to improve the
number of phase-sensing particles and thus to enhance the
QND measurement. Compared to previous works [45,46],
the SU(1,1)-SU(2)-concatenated atom-light hybrid interferom-
eter can realize QND measurement of photon numbers with
higher precision. Since the SU(2)-type and SU(1,1)-type atom-
light hybrid interferometers [40,41] have been demonstrated
experimentally, the SU(1,1)-SU(2)-concatenated atom-light
hybrid interferometer can be realized with current experimental
conditions, and the corresponding experimental requirements
are given in the Discussion section.

2. SU(1,1)-SU(2)-CONCATENATED ATOM–LIGHT
HYBRID INTERFEROMETER

An SU(1,1)-SU(2)-concatenated atom-light hybrid interferom-
eter is shown in Fig. 1(a). The corresponding energy levels of
the atom and optical frequencies for the formation of the
SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer
are given in Fig. 1(b), where the lower two energy states jgi and
jmi are the hyperfine split ground states. The higher-energy
state jei is the excited state. The strong pump field Ap1 (Ap2 )
and strong read field Ep1 (Ep2 ) couple transitions jgi → jei and
jmi → jei, respectively. The process can be used to describe the
linear and nonlinear splitting and recombination of the light
field and spin wave, i.e., NRP and LRP.

In the case of undepleted read field approximation, the two-
mode coupled Hamiltonian is written as [40]

ĤLRP � iℏΩâW Ŝ†a �H:c:, (1)

where Ŝa ≡ �1∕ ffiffiffiffiffi
N

p �Pk jgikkhmj is the spin wave (atomic col-
lective excitation), with N the number of atoms in the ensem-
ble, and Ω is the Rabi-like frequency. The Rabi-like oscillation
between the write field and the atomic spin wave occurs, and
the input–output relation is given by

Ŝ�out�a � Ŝ�in�a cos�jΩjτr� − â�in�W sin�jΩjτr�,

â�out�W � â�in�W cos�jΩjτr� � Ŝ�in�a sin�jΩjτr�, (2)

where τr is the interaction time of read field Ep. This transform
of Eq. (2) can be used for LRP. In the case of undepleted pump
field approximation, the Hamiltonian is written as [41]

ĤNRP � iℏηApâ
†
S Ŝ

†
a �H:c:, (3)

where η is the coupling coefficient, and Ap is the amplitude of
the pump beam. The input–output relation is given by

Ŝ�out�a �GŜ�in�a � geiθâ†�in�S , â�out�S �Gâ�in�S �geiθŜ†�in�a , (4)

where eiθ � ηAp∕jηApj, G � cosh�jηApjτp�, and g �
sinh�jηApjτp� are the gains of the process, with
G2 − g2 � 1, τp the pulse duration of pump beam Ap. This
transform of Eq. (4) can be used for NRP.

Next, according to the above linear and nonlinear transforms,
the output operators of the SU(1,1)-SU(2)-concatenated atom-
light hybrid interferometer are worked out as a function of the
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input operators with three steps: (1) state preparation; (2) SU(2)
interferometer, and (3) readout. In the first step, we prepare the
initial atomic spin wave Ŝ�0�a and a correlated optical wave â�1�S via
NRP1. It can be described as

Ŝ�0�a �G1Ŝ
�in�
a � g1e

iθ1 â†�in�S , â�1�S �G1â
�in�
S �g1e

iθ1 Ŝ†�in�a :

(5)

Next, the beam splitter in an SU(2) interferometer is pro-
vided by the LRP, which can split and mix the atomic spin
wave and the optical wave coherently for interference. â�0�W is
a coherent state, and Ŝ�0�a is an atomic collective excitation pre-
pared by NRP1. The relationship between input and output in
the SU(2) interferometer is given by

Ŝ�3�a � tŜ�0�a � râ�0�W , â�2�W � t â�0�W � rŜ�0�a , (6)

where t � eiϕ∕2 cos�ϕ∕2�, r � ieiϕ∕2 sin�ϕ∕2�, and ϕ denotes
the phase shift.

In the final step, the generated atomic spin wave Ŝ�3�a of the
SU(2) interferometer and the optical wave â�1�S are combined to
realize active correlation output readout via NRP2. It can be
expressed as

Ŝ�out�a � G2Ŝ
�3�
a � g2e

iθ2 â†�1�S ,

â�out�S � G2â
�1�
S � g2e

iθ2 Ŝ†�3�a : (7)

And thus, the full input–output relation of the actively cor-
related atom-light hybrid interferometer is

â�out�S � Aâ�in�S � BŜ†�in�a � Câ†�0�W ,

Ŝ�out�a � Dâ†�in�S � EŜ�in�a � Fâ�0�W , (8)

where

A � G2G1 � g2g1e
i�θ2−θ1�t�,B � G2g1e

iθ1 � G1g2e
iθ2 t�,

D � G1g2e
iθ2 � G2g1e

iθ1 t ,E � g2g1e
i�θ2−θ1� � G2G1t ,

C � g2e
iθ2 r�, F � G2r: (9)

3. QND MEASUREMENT OF PHOTON NUMBER

This new type interferometer in Section 2 can be used as a
probe system for QND measurement. The schematic of
QND measurement of a photon number is shown in Fig. 1(a);
when the atom system of this new type interferometer is illu-
minated by the off-resonant signal light b̂�in�, the interaction
between the atom and signal light b̂�in� will induce an atomic
phase shift [51,52]:

ϕAC � κn̂b, (10)

where n̂b � b̂�in�†b̂�in� is the photon number operator of the
signal light, and κ is the AC-Stark coefficient.

In this QND measurement scheme, the photon number of
the signal light is the QND observable, while the phase of the
signal light is the conjugated observable. The quantum noise
induced by the act of measurement is fed into the unmeasured
conjugate observable ϕ�s� of the signal light, where superscript

Fig. 1. (a) Schematic of QND measurement of photon number. The probe system consists of an SU(1,1)-SU(2)-concatenated atom–light hybrid
interferometer. In the SU(2) interferometer in the middle box, the LRP is utilized to realize the splitting and combination of the atomic spin wave
and the optical wave. â�0�W is a coherent state, and Ŝ�0�a , Ŝ�1�a , and Ŝ�3�a are atomic collective excitations prepared by NRP1, LRP1, and LRP2,
respectively. The atomic spin wave Ŝ�1�a experiences a phase modulation ϕAC via the AC-Stark effect by signal light b̂�in� and evolves to Ŝ�2�a .
The generated atomic spin wave Ŝ�3�a of the SU(2) interferometer and the optical wave â�1�S , which is correlated with Ŝ�0�a , are combined to realize
active correlation output readout via NRP2. LRP, linear Raman process; NRP, nonlinear Raman process. (b) Energy levels of the atom. The lower
two energy states jgi and jmi are the hyperfine split ground states. The higher-energy state jei is the excited state. The strong pump field Ap1 (Ap2 )
and strong read field Ep1 (Ep2 ) couple the transitions jgi → jei and jmi → jei, respectively. b̂�in� is far off resonance with the transition jmi → jei by a
large detuning.
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�s� denotes the signal light. The uncertainty of these two ob-
servables is limited by the Heisenberg relation Δn�s�b Δϕ�s� ≥ 1
[53]. That is, the QND measurement of the observable n�s�b is
accomplished at the expense of an uncertainty increase in its
conjugate observable ϕ�s�. By monitoring the atomic phase shift
ϕAC using this atom-light hybrid interferometer, we can deter-
mine the photon number of the signal light without destroying
the photons. The phase shift of the atomic spin wave is the
readout observable, which can be measured by homodyne de-
tection. Next, we analyze the performance of this scheme as a
QND measurement.

A. SNR Analysis
The QND measurement scheme that uses the AC-Stark effect
is based on the precision measurement of the photon-induced
atomic phase shift; thus, the SNR analysis is helpful to examine
the performance of the QND measurement process. Given the
homodyne detection, the SNR is defined as

R � hX̂ �out�
S i2

hΔ2X̂ �out�
S i

, (11)

where hX̂ �out�
S i and hΔ2X̂ �out�

S i denote the quantum expectation
and variance of the amplitude quadrature, respectively. In our
scheme, they are given by

hX̂ �out�
S i � hâ�out�S � â†�out�S i

� g2N
1∕2
α �cos�θ2 − θα − ϕ� − cos�θ2 − θα��; (12)

hΔ2X̂ �out�
S i � G2

2G
2
1 � G2

2g
2
1 � g22�1 − cos ϕ�∕2

� g22g
2
1�1� cos ϕ�∕2� G2

1g
2
2�1� cos ϕ�∕2

� 2G2G1g2g1 cos�θ2 − θ1 − ϕ�
� 2G2G1g2g1 cos�θ2 − θ1�: (13)

Here â�in�S and Ŝ�in�a are in vacuum states, and â�0�W is in a co-
herent state jαi, with α � N 1∕2

α eiθα , where N α and θα are the
photon number and initial phase of the coherent state, respec-
tively. The phase shift ϕ includes the phase difference ϕ0 of the
interferometer and the phase difference ϕAC caused by the AC-
Stark effect, with ϕAC � κn̂b. Our scheme can be thought of as
inserting an SU(2) interferometer into one of the arms of the
SU(1,1) interferometer. For a balanced SU(1,1) interferometer
configuration, two NRPs of equal gain (g2 � g1 � g) and op-
posite pump phases (θ1 � 0, θ2 � π) are arranged in series.
NRP1 produces an optical field together with a correlated
atomic spin excitation, while NRP2 is shifted in pump phase
to exactly reverse the operation of NRP1 and return the optical
field and atomic spin excitation back to their original input
states. When a phase shift is introduced, the transfer is no
longer complete, and thus leads to a change in the output cor-
responding to the induced phase shift. Here we first consider a
balanced case in which the SU(2) interferometer is introduced
into a balanced SU(1,1) interferometer. With a small ϕAC

around ϕ0 � 0 and α � iN 1∕2
α , assuming the signal light is

in a number state jni with n̂bjni � nbjni and substituting
ϕAC with κn̂b, the SNR is

R ≈ g2κ2N αn2b : (14)

To have single-photon resolution, we need AC-Stark coef-
ficient κ ∼ 1∕gN 1∕2

α . Compared to the traditional SU(2) inter-
ferometer [45], the required coefficient is smaller by a factor of
1∕g . This is due to the method of active correlation output
readout for the SU(2) interferometer [54], in which the SNR
is greater than for the SU(2) interferometer by a factor of g
of NRP.

B. Quality Estimation
In QND measurement, the signal light is coupled to the probe
system, and a subsequent readout measurement of the probe
output is made to extract the information about the signal light
without perturbing it. An ideal QND measurement requires a
perfect correlation between the signal and the probe system. In
practice, the probe output itself has fluctuation, which leads to
a nonideal QND measurement. Thus the quality of the QND
measurement scheme is worth studying. In this section, we es-
timate the quality using the criteria introduced by Holland
et al. [47], which are

C2
S inSout �

jhS inSouti − hS inihSoutij2
hΔ2S inihΔ2Souti , (15)

C2
S inPout � jhS inPouti − hS inihPoutij2

hΔ2S inihΔ2Pouti , (16)

C2
SoutPout � jhSoutPouti − hSoutihPoutij2

hΔ2SoutihΔ2Pouti , (17)

with

hΔ2S ini � h�S in�2i − hS ini2,
hΔ2Souti � h�Sout�2i − hSouti2,
hΔ2P ini � h�P in�2i − hPini2,
hΔ2Pouti � h�Pout�2i − hPouti2, (18)

where S in is the input signal incident on the scheme, and Pout is
the output probe measured by a detector. Here S in is the pho-
ton number of the input signal N̂ �in� � b̂†�in�b̂�in�, and the
probe is the amplitude quadrature X̂ �out�

S . Equation (15) shows
how much the probe system degrades the signal of the mea-
sured system. Equation (16) shows how good the probe system
is as a measurement device. Equation (17) shows how good the
probe system is as a state preparation device. For an ideal QND
measurement device, the correlation coefficients C2

S inSout ,
C2

S inPout , and C2
SoutPout are unity. In our paper, the signal light

leading to the AC-Stark shift is far off resonance with a large
detuning, i.e., the photon number of the measured signal light
is not changed before or after measurement. So the first cri-
terion is satisfied, and the second and third criteria become
the same: C2

N̂ �in�X̂ �out�
S

� C2

N̂ �out�X̂ �out�
S

, that is,

C2 � jhN̂ �in�X̂ �out�
S i − hN̂ �in�ihX̂ �out�

S ij2
hΔ2N̂ �in�ihΔ2X̂ �out�

S i
: (19)

For brevity, we omit the subscript of C . In the previous sec-
tion, even if we assume the signal light is in a number state,
which is the eigenstate of the photon number measurement
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process (n̂bjni � nbjni), the probe output has fluctuation and
does not yield a definite value. Here, for convenience, the signal
light is set in a coherent state jβi with photon number N β. We
obtain

hN̂ �in�i �N β, Δ2N̂ �in� �N β,

hX̂ �out�
S i � g2κN

1∕2
α N β,

hN̂ �in�X̂ �out�
S i � g2κN

1∕2
α N β�N β � 1�,

hΔ2X̂ �out�
S i � �G2G1 − g2g1�2��G2g1 −G1g2�2

� g22κ
2N αN β �G2

1g
2
2κ

2N β�N β � 1�∕2. (20)

Substituting Eq. (20) into Eq. (19), the criteria can be writ-
ten as

C2 � 1

1� �G2G1−g2g1�2��G2g1−G1g2�2
g22κ

2N αN β
� G2

1�N β�1�
2N α

: (21)

As seen in Eq. (21), a perfect correlation C2 ≈ 1 can be satisfied
under the condition of g22κ

2N αN β ≫ �G2G1 − g2g1�2�
�G2g1 − G1g2�2 and 2N α ≫ G2

1�N β � 1�. In a balanced case,
the condition for a perfect correlation is g2κ2N αN β ≫ 1
and 2N α ≫ G2�N β � 1�.
C. Optimized C in the Presence of Losses
Next, we investigate the effects of losses on the correlation co-
efficient C in the presence of photon losses and atomic
decoherence losses [43].

The loss of the two arms inside the SU(2) interferometer is
called internal loss, as shown in Fig. 2(a). The loss at the output
of SU(2) and the associated optical field is called external loss,
as shown in Fig. 2(b). Two fictitious beam splitters are intro-
duced to mimic the loss of photons into the environment, and
then optical waves â�1�W and â�1�S experience losses as

â�1�W ,l �
ffiffiffiffiffi
η1

p
â�1�W �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η1

p
V̂ 1, (22)

â�1�S,l �
ffiffiffiffiffi
η2

p
â�1�S �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
V̂ 2, (23)

where subscript l indicates the loss, and η1 (η2) and V̂ 1 (V̂ 2)
represent the transmission rate and vacuum, respectively. The

spin waves Ŝ�2�a (Ŝ�3�a ) also undergo collisional dephasing e−Γ1τ1

(e−Γ2τ2 ), and then the spin waves are described by

Ŝ�2�a,l � Ŝ�2�a e−Γ1τ1 � F̂ 1, (24)

Ŝ�3�a,l � Ŝ�3�a e−Γ2τ2 � F̂ 2, (25)

where hF̂ 1F̂
†
1i � 1 − e−2Γ1τ1 and hF̂ 2F̂

†
2i � 1 − e−2Γ2τ2 guaran-

tee the consistency of the operator properties of Ŝ�2�a,l and Ŝ�3�a,l ,
respectively. The input–output relation for the loss case
of â�out�S becomes

â�out�S,l � â�in�S A� Ŝ†�in�a B� â†�0�W C� V̂ †
1D

� V̂ 2E � F̂ †
1F � F̂ †

2G, (26)

where

A � � ffiffiffiffiffi
η2

p
G2G1 � g2g1e

i�θ2−θ1��e−Γ1τ1e−iϕ � ffiffiffiffiffi
η1

p �e−Γ2τ2∕2�,
B � � ffiffiffiffiffi

η2
p

G2g1e
iθ1 � G1g2e

iθ2�e−Γ1τ1e−iϕ � ffiffiffiffiffi
η1

p �e−Γ2τ2∕2�,
C � g2e

iθ2�e−Γ1τ1e−iϕ −
ffiffiffiffiffi
η1

p �e−Γ2τ2∕2,

D � −g2e
iθ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η1

p
e−Γ2τ2∕

ffiffiffi
2

p
,

E � G2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
,

F � g2e
iθ2e−Γ2τ2∕

ffiffiffi
2

p
,

G � g2e
iθ2 : (27)

We study the effect of losses under the condition of θ1 � 0,
θ2 � π, θα � π∕2, and ϕ0 � 0, with a small ϕAC around ϕ0.
Considering losses, the terms of hX̂ �out�

S il , hN̂ �in�X̂ �out�
S il , and

hΔ2X̂ �out�
S il in Eq. (20) are given by

hX̂ �out�
S il � g2e

−Γ1τ1e−Γ2τ2κN 1∕2
α N β, (28)

hN̂ �in�X̂ �out�
S il � g2e

−Γ1τ1e−Γ2τ2κN 1∕2
α N β�N β � 1�, (29)

and

hΔ2X̂ �out�
S il

� � ffiffiffiffiffi
η2

p
G2G1 − g2g1e

−Γ1τ1e−Γ2τ2∕2 − g2g1e−Γ2τ2
ffiffiffiffiffi
η1

p
∕2�2

� � ffiffiffiffiffi
η2

p
G2g1 − G2g2e

−Γ1τ1e−Γ2τ2∕2 − G1g2e
−Γ2τ2

ffiffiffiffiffi
η1

p
∕2�2

� g22��1 − e−2Γ1τ1�e−2Γ2τ2∕2� �1 − e−2Γ2τ2��
� g22�2g21 � 1�κ2N β�N β � 1�e−2Γ1τ1e−2Γ2τ2∕4

� g22κ
2N β�N α � �N β � 1�∕4�e−2Γ1τ1e−2Γ2τ2

� �g2e−Γ2τ2
ffiffiffiffiffi
η1

p
∕2 − g2e−Γ1τ1e−Γ2τ2∕2�2

� g22�1 − η1�e−2Γ2τ2∕2� G2
2�1 − η2�, (30)

and then the QND measurement criterion for the loss case can
be obtained according to Eq. (19).

In our scheme, the atomic spin wave stays in the atomic
ensemble, while the optical field travels out of the atomic en-
semble. Here, within the coherence time, the atomic collisional
dephasing loss Γ1τ1(Γ2τ2) is small, and then we set e−Γ1τ1 �
e−Γ2τ2 � 0.9. The correlation coefficient C as a function of η1
and η2 in the balanced case is shown in Fig. 3. It is shown that
the reduction in the correlation coefficient C increases as the
loss increases, and that our scheme is more tolerant with the

Fig. 2. Lossy interferometer model with (a) internal loss and
(b) external loss.
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internal photon loss η1 compared to the photon loss outside the
SU(2) interferometer η2. The reason behind the phenomenon
is that a large external photon loss affects the quantum corre-
lation between the light wave and atomic spin wave, which de-
stroys the active correlation output readout.

In the unbalanced case (g1 ≠ g2), we can adjust the gain
ratio g2∕g1 of the beam recombination process to reduce
the reduction in correlation coefficient. The black line in
Fig. 3 is labeled as C0, as a benchmark for comparison before
and after optimization; here we set C0 � 0.6. The correlation
coefficient in the area of the upper right corner and within the
C0 lines can be kept above 0.6. After optimizing g2, the cor-
relation coefficient as a function of η1 and η2 can also be ob-
tained, where the line with C equal to 0.6 is denoted as C1.
The contour lines of optimized g2∕g1 as a function of η1 and η2
are shown in Fig. 4, where the position of C0 (before optimi-
zation) and C1 (after optimization) in the contour figure of the
correlation coefficient versus transmission rates has changed. It

is demonstrated that for a given g1 by optimizing g2∕g1, the
small area between C0 and C1 can still stay above 0.6. That
is, within a certain loss range, C can continue to beat the cri-
teria (such as C equal to 0.6� after optimizing g2∕g1. The newly
added area after optimization is divided into two parts: (1) ratio
g2∕g1 within the very small area above is less than one, and (2)
ratio g2∕g1 needs to be greater than one.

4. DISCUSSION AND CONCLUSION

In our scheme, the spin wave prepared by the first NRP par-
ticipates in the subsequent LRP and NRP, and additional op-
erations are required within the coherence time of the spin wave
compared to previous experimental works on atom-light inter-
ferometers [40,41]; therefore, the pulse width and intensity of
the pump field Ap1 (Ap2 ) and the read field Ep1 (Ep2 ) should be
properly arranged. Experimental consideration of the imple-
mentation of the scheme may be performed with a rubidium
atomic vapor in a cell. The energy levels of the Rb atom are
shown in Fig. 1(b), where states jgi and jmi are the two ground
states j52S1∕2, F � 1,2i from hyperfine splitting, and jei is the
excited state j52P1∕2, F � 2i. The signal field is far resonance
with the transition j52S1∕2, F � 2i → j52P1∕2, F � 2i by
2−4 GHz detuning [40]. The interaction between the atom
and signal light will induce an atomic phase shift that is propor-
tional to the photon number of the signal field. With a detun-
ing 2 GHz and photon number of signal light N β � 108, the
AC-Stark coupling coefficient κ is ∼10−10 rad per photon [45].
With a gain g2 � 10 obtained by turning the pumping field
intensity, to realize a perfect correlation, the theoretical require-
ment N αN β ≫ �1∕gκ�2 � 1019 and N α ≫ 5.5N β should be
satisfied. Since given N β � 108, we choose N α � 1012. In the
calculations, the photon numbers are much smaller than the
number of atoms in the interaction region. Thus, the density
of the atomic sample is 1013−1014 cm−3 by controlling the cell
temperature. The signal light is turned on after the first linear
Raman splitting process and turned off right before the second
linear Raman mixing process. The pulse width of signal light
should be short, and in this way, it will not affect the LRP for
splitting and mixing the atomic and optical waves. Here we set
the pulse width of signal field ∼100 ns. To realize N β � 108,
the power of signal light is ∼0.25 mW for wavelength
0.795 μm with coherent time 100 ns. The mean photon num-
berN α � 1012 of â�0�W field is given with ∼2.5 mW of coherent
time 100 μs for wavelength 0.795 μm. The requirement for
the number of photons N α and N β can be met and be feasible
in the experiment.

In conclusion, we have proposed an SU(1,1)-SU(2)-
concatenated atom-light hybrid interferometer and used it for
QND measurement of photon numbers via the AC-Stark ef-
fect. In the scheme, the atomic spin wave of the SU(2) inter-
ferometer is prepared via an NRP, and the output is detected
with the method of active correlation output readout via an-
other NRP. Benefiting from that, the SNR in the balanced case
is improved by a factor of g compared to the traditional SU(2)
interferometer. The condition for a perfect correlation is given.
The measurement quality is reduced in the presence of losses.
We can adjust the gain parameter of the NRP in the readout
stage to reduce the impact of losses. Moreover, the scheme is a

Fig. 4. Contour line of optimized g2∕g1 as a function of η1 and η2,
with e−Γ1τ1 � e−Γ2τ2 � 0.9, where κ � 10−10, g1 � 3, N α � 1012,
and N β � 108. The correlation coefficient in the area of upper right
corner and within the line C0 (before optimization) or C1 (after opti-
mization) can be kept above 0.6.

Fig. 3. Correlation coefficient C as a function of η1 and η2, where
e−Γ1τ1 � e−Γ2τ2 � 0.9, κ� 10−10, g1 � g2 � 3, N α � 1012, and
N β � 108. The correlation coefficient in the area of upper right
corner and within the C0 lines can be kept above 0.6.
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multiarm interferometer, and it provides an option for the si-
multaneous estimation of more than two parameters with a
wide range of applications, such as phase imaging [55], quan-
tum sensing networks [56], and detection of vector fields [57].
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