• Journal of Inorganic Materials
  • Vol. 35, Issue 2, 224 (2020)
Xiao SHAO1、2, Rui-Heng LIU1、3、*, Liang WANG1, Jing CHU1、2, Guang-Hui BAI4, Sheng-Qiang BAI1、3, Ming GU1, Li-Na ZHANG4, Wei MA4, and Li-Dong CHEN1、3
Author Affiliations
  • 1The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Science and Technology on Space Physics Laboratory, Beijing 100076, China
  • show less
    DOI: 10.15541/jim20190112 Cite this Article
    Xiao SHAO, Rui-Heng LIU, Liang WANG, Jing CHU, Guang-Hui BAI, Sheng-Qiang BAI, Ming GU, Li-Na ZHANG, Wei MA, Li-Dong CHEN. Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions[J]. Journal of Inorganic Materials, 2020, 35(2): 224 Copy Citation Text show less
    References

    [1] E BELL L. Cooling, heating, generating power and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [2] D CHAMPIER. Thermoelectric generators: a review of applications. Energy Conversion and Management, 140, 167-181(2017).

    [3] L CHEN, S BAI, Q ZHANG. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 34, 279(2019).

    [4] C SALES B, D MANDRUS, K WILLIAMS R. Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 272, 1325-1328(1996).

    [5] H LIU, X SHI, F XU et al. Copper ion liquid-like thermoelectrics. Nature Materials, 11, 422-425(2012).

    [6] D ZHAO L, H LO S, Y ZHANG et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [7] H ZHANG Q, Y HUANG X, Q BAI S et al. Thermoelectric devices for power generation: recent progress and future challenges. Advanced Engineering Materials, 18, 194-213(2016).

    [8] R HE, G SCHIERNING, K NIELSCH. Thermoelectric devices: a review of devices, architectures, and contact optimization. Advanced Materials Technologies, 3, 1700256(2018).

    [9] Q ZHANG, J LIAO, Y TANG et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy- loss minimized integration. Energy Environ. Sci., 10, 956-963(2017).

    [10] Z YAO, P QIU, X LI et al. Investigation on quick fabrication of n-type filled skutterudites. Journal of Inorganic Materials, 31, 1375-1382(2016).

    [11] V RAVI, S FIRDOSY, T CAILLAT et al. Mechanical properties of thermoelectric skutterudites. AIP Conference Proceedings, 969, 656-662(2008).

    [12] R SALVADOR J, J YANG, X SHI et al. Transport and mechanical properties of Yb-filled skutterudites. Philosophical Magazine, 89, 1517-1534(2009).

    [13] T DAHAL, S KIM H, S GAHLAWAT et al. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4-xCoxSb12. Acta Materialia, 117, 13-22(2016).

    [14] Z RUAN, L LIU, P ZHAI et al. Residual strength degradation of CoSb3 skutterudite compounds under low-cycle fatigue loading. Journal of Electronic Materials, 41, 1487-1492(2012).

    [15] P WEN, Y ZHU, J CHEN et al. The microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12 under cyclic thermal loading. Journal of Materials Engineering and Performance, 25, 4764-4768(2016).

    [16] D ZHAO, X LI, L HE et al. Interfacial evolution behavior and reliability evaluation of CoSb(3)/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging. Journal of Alloys and Compounds, 477, 425-431(2009).

    [17] L SHI, X HUANG, M GU et al. Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements. Surface and Coatings Technology, 285, 312-317(2016).

    [18] C FAN X, M GU, X SHI et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceramics International, 41, 7590-7595(2015).

    [19] T WOJCIECHOWSKI K, R ZYBALA, R MANIA. High temperature CoSb3-Cu junctions. Microelectronics Reliability, 51, 1198-1202(2011).

    [20] M GU, X XIA, X LI et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. Journal of Alloys and Compounds, 610, 665-670(2014).

    [21] S TANG Y, Q BAI S, D REN D et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 30, 256-260(2015).

    [22] M GU, S BAI, J WU et al. A high throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules. Journal of Materials Research, 34, 1179-1187(2019).

    [23] L CHEN, S BAI, R LIU et al. Interface stability of skutterudite thermoelectric materials/Ti88Al12. Journal of Inorganic Materials, 33, 889-894(2018).

    [24] S EL-GENK M, H SABER H, T CAILLAT et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Conversion and Management, 47, 174-200(2006).

    [25] H HSUEH C. Thermal stresses in elastic multilayer systems. Thin Solid Films, 418, 182-188(2002).

    [26] M HAN, J HUANG, S CHEN. The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings. Ceramics International, 41, 4312-4325(2015).

    [27] Y LI, Q YANG X, C ZHAI P et al. Thermal stress simulation and optimum design of CoSb3/Bi2Te3 thermoelectric unicouples with graded interlayers. AIP Conference Proceedings, 973, 297-302(2008).

    [28] X JIA, Y GAO. Estimation of thermoelectric and mechanical performances of segmented thermoelectric generators under optimal operating conditions. Applied Thermal Engineering, 73, 335-342(2014).

    [29] M GU, X XIA, X HUANG et al. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. Journal of Alloys and Compounds, 671, 238-244(2016).

    Xiao SHAO, Rui-Heng LIU, Liang WANG, Jing CHU, Guang-Hui BAI, Sheng-Qiang BAI, Ming GU, Li-Na ZHANG, Wei MA, Li-Dong CHEN. Interfacial Stress Analysis on Skutterudite-based Thermoelectric Joints under Service Conditions[J]. Journal of Inorganic Materials, 2020, 35(2): 224
    Download Citation