• Photonics Research
  • Vol. 12, Issue 4, 833 (2024)
Woongseob Han1、†, Jae-Won Lee2、†, Jung-Yeop Shin2, Myeong-Ho Choi1, Hak-Rin Kim2、3、5、*, and Jae-Hyeung Park1、4、6、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
  • 2School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
  • 3School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
  • 4Department of Information and Communication Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
  • 5e-mail: rineey@knu.ac.kr
  • 6e-mail: jh.park@inha.ac.kr
  • show less
    DOI: 10.1364/PRJ.509948 Cite this Article Set citation alerts
    Woongseob Han, Jae-Won Lee, Jung-Yeop Shin, Myeong-Ho Choi, Hak-Rin Kim, Jae-Hyeung Park. Varifocal occlusion in an optical see-through near-eye display with a single phase-only liquid crystal on silicon[J]. Photonics Research, 2024, 12(4): 833 Copy Citation Text show less
    References

    [1] C. Chang, K. Bang, G. Wetzstein. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 7, 1563-1578(2020).

    [2] J. Xiong, E. L. Hsiang, Z. He. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl., 10, 216(2021).

    [3] S. Moon, S.-W. Nam, Y. Jeong. Compact augmented reality combiner using Pancharatnam-Berry phase lens. IEEE Photon. Technol. Lett., 32, 235-238(2020).

    [4] Y. H. Lee, G. Tan, K. Yin. Compact see-through near-eye display with depth adaption. J. Soc. Inf. Disp., 26, 64-70(2018).

    [5] D. Cheng, Y. Wang, C. Xu. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express, 22, 20705-20719(2014).

    [6] C. Yoo, K. Bang, M. Chae. Extended-viewing-angle waveguide near-eye display with a polarization-dependent steering combiner. Opt. Lett., 45, 2870-2873(2020).

    [7] A. Maimone, D. Lanman, K. Rathinavel. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph., 33, 89(2014).

    [8] X. Duan, J. Liu, X. Shi. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box. Opt. Express, 28, 31316-31329(2020).

    [9] J. Xiong, G. Tan, T. Zhan. Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Contin., 3, 2730-2740(2020).

    [10] X. Shi, J. Liu, Z. Zhang. Extending eyebox with tunable viewpoints for see-through near-eye display. Opt. Express, 29, 11613-11626(2021).

    [11] J. Jeong, J. Lee, C. Yoo. Holographically customized optical combiner for eye-box extended near-eye display. Opt. Express, 27, 38006-38018(2019).

    [12] T. Lin, T. Zhan, J. Zou. Maxwellian near-eye display with an expanded eyebox. Opt. Express, 28, 38616-38625(2020).

    [13] Y. Jo, C. Yoo, K. Bang. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints. Appl. Opt., 60, A268-A276(2021).

    [14] C. Jang, K. Bang, G. Li. Holographic near-eye display with expanded eye-box. ACM Trans. Graph., 37, 195(2019).

    [15] H. Do, Y. M. Kim, S.-W. Min. Focus-free head-mounted display based on Maxwellian view using retroreflector film. Appl. Opt., 58, 2882-2889(2019).

    [16] T. Ueno, Y. Takaki. Super multi-view near-eye display to solve vergence-accommodation conflict. Opt. Express, 26, 30703-30715(2018).

    [17] C. Martinez, V. Krotov, B. Meynard. See-through holographic retinal projection display concept. Optica, 5, 1200-1209(2018).

    [18] A. Maimone, A. Georgiou, J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph., 36, 85(2017).

    [19] C. Jang, K. Bang, S. Moon. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph., 36, 190(2017).

    [20] C. Chang, W. Cui, J. Park. Computational holographic Maxwellian near-eye display with an expanded eyebox. Sci. Rep., 9, 18749(2019).

    [21] D. Dunn, C. Tippets, K. Torell. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors. IEEE Trans. Vis. Comput. Graph., 23, 1322-1331(2017).

    [22] J. E. Cutting, P. M. Vishton. Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. Perception of Space and Motion, 69-117(1995).

    [23] E.-L. Hsiang, Z. Yang, Q. Yang. AR/VR light engines: perspectives and challenges. Adv. Opt. Photon., 14, 783-861(2022).

    [24] B. C. Kress. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets(2020).

    [25] E. Tatham. Technical opinion: getting the best of both real and virtual worlds. Commun. ACM, 42, 96-98(1999).

    [26] K. Kiyokawa, M. Billinghurst, B. Campbell. An occlusion capable optical see-through head mount display for supporting co-located collaboration. 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, 1-9(2003).

    [27] Y. Itoh, T. Hamasaki, M. Sugimoto. Occlusion leak compensation for optical see-through displays using a single-layer transmissive spatial light modulator. IEEE Trans. Vis. Comput. Graph., 23, 2463-2473(2017).

    [28] V. Mathur, J. N. Haddock, T. Diehl. Ambient light management systems and methods for wearable devices. U.S. Patent(2023).

    [29] A. Wilson, H. Hua. Design and prototype of an augmented reality display with per-pixel mutual occlusion capability. Opt. Express, 25, 30539-30549(2017).

    [30] B. Krajancich, N. Padmanaban, G. Wetzstein. Factored occlusion: single spatial light modulator occlusion-capable optical see-through augmented reality display. IEEE Trans. Visual. Comput. Graph., 26, 1871-1879(2020).

    [31] Y.-G. Ju, M.-H. Choi, P. Liu. Occlusion-capable optical-see-through near-eye display using a single digital micromirror device. Opt. Lett., 45, 3361-3364(2020).

    [32] O. Cakmakci, Y. Ha, J. P. Rolland. A compact optical see-through head-worn display with occlusion support. Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 16-25(2004).

    [33] C. Gao, Y. Lin, H. Hua. Occlusion capable optical see-through head-mounted display using freeform optics. IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 281-282(2012).

    [34] M. Chae, K. Bang, Y. Jo. Occlusion-capable see-through display without the screen-door effect using a photochromic mask. Opt. Lett., 46, 4554-4557(2021).

    [35] A. Wilson, H. Hua. Design of a pupil-matched occlusion-capable optical see-through wearable display. IEEE Trans. Vis. Comput. Graph., 28, 4113-4126(2021).

    [36] Y. Zhang, X. Hu, K. Kiyokawa. Add-on occlusion: turning off-the-shelf optical see-through head-mounted displays occlusion-capable. IEEE Trans. Vis. Comput. Graph., 29, 2700-2709(2023).

    [37] Y. Zhang, X. Hu, K. Kiyokawa. Realizing mutual occlusion in a wide field-of-view for optical see-through augmented reality displays based on a paired-ellipsoidal-mirror structure. Opt. Express, 29, 42751-42761(2021).

    [38] L. Shi, B. Li, C. Kim. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234-239(2021).

    [39] S. Lee, Y. Jo, D. Yoo. Tomographic near-eye displays. Nat. Commun., 10, 2497(2019).

    [40] S. Choi, M. Gopakumar, Y. Peng. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. ACM Trans. Graph., 41, 119(2022).

    [41] J. Kim, M. Gopakumar, S. Choi. Holographic glasses for virtual reality. ACM SIGGRAPH 2022 Conference Proceedings, 33(2022).

    [42] D. Lanman, D. Luebke. Near-eye light field displays. ACM Trans. Graph., 32, 220(2013).

    [43] T. Hamasaki, Y. Itoh. Varifocal occlusion for optical see-through head-mounted displays using a slide occlusion mask. IEEE Trans. Vis. Comput. Graph., 25, 1961-1969(2019).

    [44] K. Rathinavel, G. Wetzstein, H. Fuchs. Varifocal occlusion-capable optical see-through augmented reality display based on focus-tunable optics. IEEE Trans. Vis. Comput. Graph., 25, 3125-3134(2019).

    [45] Y. Hiroi, T. Kaminokado, S. Ono. Focal surface occlusion. Opt. Express, 29, 36581-36597(2021).

    [46] M. Chae, J. Shin, Y. Jo. Implementation of varifocal occlusion using lens arrays and focus-tunable lenses. Proc. SPIE, 12443, 124430G(2023).

    [47] L. Lu, S. C. McEldowney, P. Saarikko. Focus adjusting Pancharatnam Berry phase liquid crystal lenses in a head-mounted display. U.S. Patent(2019).

    [48] Z. Luo, Y. Li, J. Semmen. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci. Appl., 12, 230(2023).

    Woongseob Han, Jae-Won Lee, Jung-Yeop Shin, Myeong-Ho Choi, Hak-Rin Kim, Jae-Hyeung Park. Varifocal occlusion in an optical see-through near-eye display with a single phase-only liquid crystal on silicon[J]. Photonics Research, 2024, 12(4): 833
    Download Citation