• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312013 (2023)
Guanhao Wu†、*, Liheng Shi1、†, and Erge Li
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/LOP223339 Cite this Article Set citation alerts
    Guanhao Wu, Liheng Shi, Erge Li. Surface Topography Measurement Technology Based on Optical Frequency Comb[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312013 Copy Citation Text show less
    References

    [1] de Groot P. Principles of interference microscopy for the measurement of surface topography[J]. Advances in Optics and Photonics, 7, 1-65(2015).

    [2] Patti R S. Three-dimensional integrated circuits and the future of system-on-chip designs[J]. Proceedings of the IEEE, 94, 1214-1224(2006).

    [3] Espinosa H D, Prorok B C, Fischer M. A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J]. Journal of the Mechanics and Physics of Solids, 51, 47-67(2003).

    [4] Zhang X D, Zeng Z, Liu X L et al. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement[J]. Optics Express, 23, 24800-24810(2015).

    [5] Novak E, Stout T. Interference microscopes for tribology and corrosion quantification[J]. Proceedings of SPIE, 6616, 66163B(2007).

    [8] Wu D X, Fang F Z. Development of surface reconstruction algorithms for optical interferometric measurement[J]. Frontiers of Mechanical Engineering, 16, 1-31(2021).

    [9] Fonstad M A, Dietrich J T, Courville B C et al. Topographic structure from motion: a new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 38, 421-430(2013).

    [10] Salvi J, Fernandez S, Pribanic T et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern Recognition, 43, 2666-2680(2010).

    [11] Kwak H, Ahn C, Na Y J et al. 785-nm frequency comb-based time-of-flight detection for 3D surface profilometry of silicon devices[J]. IEEE Photonics Journal, 14, 3150908(2022).

    [12] Shen H, Zhu R H, Gao Z S et al. Design and fabrication of computer-generated holograms for testing optical freeform surfaces[J]. Chinese Optics Letters, 11, 32201-32205(2013).

    [13] Ding S W, Zhang X H, Yu Q F et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 54, 070003(2017).

    [14] Marrugo A G, Gao F, Zhang S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review[J]. Journal of the Optical Society of America A, 37, B60-B77(2020).

    [15] Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [16] Won R. Structured light spiralling up[J]. Nature Photonics, 11, 619-622(2017).

    [17] Dong P L, Chen Q[M]. Lidar remote sensing and applications(2017).

    [18] Hansard M, Lee S, Choi O et al[M]. Time-of-flight cameras: principles, methods and applications(2013).

    [19] Creath K. V phase-measurement interferometry techniques[J]. Progress in Optics, 26, 349-393(1988).

    [20] Sandoz P, Devillers R, Plata A. Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry[J]. Journal of Modern Optics, 44, 519-534(1997).

    [21] Yamaguchi I, Yamamoto A, Yano M. Surface topography by wavelength scanning interferometry[J]. Optical Engineering, 39, 40-46(2000).

    [22] Shi H S, Song Y J, Liang F et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics Express, 23, 14057-14069(2015).

    [23] Smith D T, Pratt J R, Howard L P. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement[J]. The Review of Scientific Instruments, 80, 035105(2009).

    [24] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-640(2000).

    [25] Quinn T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)[J]. Metrologia, 40, 103-133(2003).

    [26] Hänsch T W, Pan D W. Passion for precision[J]. Chinese Journal of Nature, 29, 12-20(2007).

    [27] Schuhler N, Salvadé Y, Lévêque S et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Optics Letters, 31, 3101-3103(2006).

    [28] Li Y. Precision measurement and spectroscopic applications of femtosecond optical frequency combs[J]. Chinese Journal of Scientific Instrument, 38, 1841-1858(2017).

    [29] Kim S W, Jang Y S, Park J et al. Dimensional metrology using mode-locked lasers[M]. Gao W. Metrology. Precision manufacturing, 1-34(2019).

    [30] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [31] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 153(2019).

    [32] Iwasaki A, Nishikawa D, Okano M et al. Temporal-offset dual-comb vibrometer with picometer axial precision[J]. APL Photonics, 7, 106101(2022).

    [33] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [34] Oh J S, Kim S W. Femtosecond laser pulses for surface-profile metrology[J]. Optics Letters, 30, 2650-2652(2005).

    [35] Kim D, Lu Y, Park J et al. Rigorous single pulse imaging for ultrafast interferometric observation[J]. Optics Express, 27, 19758-19767(2019).

    [36] Zhang X S, Yi W M, Hu M H et al. Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser[J]. Acta Physica Sinica, 65, 080602(2016).

    [37] Zhou S Y, Le V, Xiong S L et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 9, 243-251(2021).

    [38] Wang J D, Lu Z Z, Wang W Q et al. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 8, 1964-1972(2020).

    [39] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 14, 5954-5960(2006).

    [40] Wang Y, Xiong S L, Wu G H. Femtosecond laser-based phase-shifting interferometry for optical surface measurement[J]. The Review of Scientific Instruments, 89, 113105(2018).

    [41] Joo W D, Park J, Kim S et al. Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses[J]. International Journal of Precision Engineering and Manufacturing, 14, 241-246(2013).

    [42] Kato T, Uchida M, Tanaka Y et al. One-shot three-dimensional imaging using a two-dimensional spectrometer with a fiber bundle[J]. Optics Express, 29, 43778-43792(2021).

    [43] Pham Q D, Hayasaki Y. Optical frequency comb interference profilometry using compressive sensing[J]. Optics Express, 21, 19003-19011(2013).

    [44] Na Y J, Jeon C G, Ahn C et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection[J]. Nature Photonics, 14, 355-360(2020).

    [45] Weimann C, Messner A, Baumgartner T et al. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs[J]. Optics Express, 26, 34305-34335(2018).

    [46] Riemensberger J, Lukashchuk A, Karpov M et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 581, 164-170(2020).

    [47] Wang C, Deng Z J, Gu C L et al. Line-scan spectrum-encoded imaging by dual-comb interferometry[J]. Optics Letters, 43, 1606-1609(2018).

    [48] Eiji H S, Takeo M, Takahiko M et al. Scan-less confocal phase imaging based on dual-comb microscopy[J]. Optica, 5, 634-643(2018).

    [49] Körner K, Pedrini G, Alexeenko I et al. Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning[J]. Optics Express, 20, 7237-7242(2012).

    [50] Falaggis K, Towers D P, Towers C E. Method of excess fractions with application to absolute distance metrology: theoretical analysis[J]. Applied Optics, 50, 5484-5498(2011).

    [51] Hyun S, Choi M, Chun B J et al. Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces[J]. Optics Express, 21, 9780-9791(2013).

    [52] Zhang W P, Wei H Y, Yang H L et al. Comb-referenced frequency-sweeping interferometry for precisely measuring large stepped structures[J]. Applied Optics, 57, 1247-1253(2018).

    [53] Yamagiwa M, Minamikawa T, Trovato C et al. Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer[J]. Optics Express, 26, 26292-26306(2018).

    [54] Zhou W H, Shi J K, Ji R Y et al. High-precision distance measurement using femtosecond laser frequency comb[J]. Chinese Journal of Scientific Instrument, 38, 1859-1868(2017).

    [55] Li Y P, Cai Y W, Li R M et al. Large-scale absolute distance measurement with dual free-running all-polarization-maintaining femtosecond fiber lasers[J]. Chinese Optics Letters, 17, 091202(2019).

    [56] Wu G H, Zhou S Y, Yang Y T et al. Dual-comb ranging and its applications[J]. Chinese Journal of Lasers, 48, 1504002(2021).

    [57] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [58] Deng Z J, Liu Y, Zhu Z W et al. Achieving precise spectral analysis and imaging simultaneously with a mode-resolved dual-comb interferometer[J]. Sensors, 21, 3166(2021).

    [59] Xie X P, Bouchand R, Nicolodi D et al. Photonic microwave signals with zeptosecond-level absolute timing noise[J]. Nature Photonics, 11, 44-47(2017).

    [60] Jung K, Kim J. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers[J]. Optics Letters, 37, 2958-2960(2012).

    [61] Lu X, Zhang S Y, Jeon C G et al. Time-of-flight detection of femtosecond laser pulses for precise measurement of large microelectronic step height[J]. Optics Letters, 43, 1447-1450(2018).

    [62] Lichti D D. A review of geometric models and self-calibration methods for terrestrial laser scanners[J]. Boletim De Ciências Geodésicas, 16, 1-17(2010).

    [63] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 445, 627-630(2007).

    [64] Mahjoubfar A, Goda K, Ayazi A et al. High-speed nanometer-resolved imaging vibrometer and velocimeter[J]. Applied Physics Letters, 98, 101107(2011).

    [65] Mahjoubfar A, Chen C, Niazi K R et al. Label-free high-throughput cell screening in flow[J]. Biomedical Optics Express, 4, 1618-1625(2013).

    [66] Dong X, Zhou X, Kang J Q et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling[J]. Optics Letters, 43, 2118-2121(2018).

    [67] Feng P P, Kang J Q, Tan S S et al. Dual-comb spectrally encoded confocal microscopy by electro-optic modulators[J]. Optics Letters, 44, 2919-2922(2019).

    [68] Hu H Q, Ren X Y, Wen Z Y et al. Single-pixel photon-counting imaging based on dual-comb interferometry[J]. Nanomaterials, 11, 1379(2021).

    [69] Zhu Z B, Wu G H. Dual-comb ranging[J]. Engineering, 4, 772-778(2018).

    [70] Hase E J, Minamikawa T, Miyamoto S et al. Scan-less, kilo-pixel, line-field confocal phase imaging with spectrally encoded dual-comb microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6801408(2019).

    [71] Mizuno T, Tsuda T, Hase E J et al. Optical image amplification in dual-comb microscopy[J]. Scientific Reports, 10, 8338(2020).

    [72] Mizuno T, Nakajima Y, Hata Y Y et al. Computationally image-corrected dual-comb microscopy with a free-running single-cavity dual-comb fiber laser[J]. Optics Express, 29, 5018-5032(2021).

    [73] Choi S, Yamamoto M, Moteki D et al. Frequency-comb-based interferometer for profilometry and tomography[J]. Optics Letters, 31, 1976-1978(2006).

    [74] Choi S, Kurokawa T. Profilometry based on optical frequency comb[C](2009).

    [75] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 29, 1153-1155(2004).

    [76] Choi S, Kasiwagi K, Kasuya Y et al. Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer[J]. Optics Express, 20, 27820-27829(2012).

    [77] Joo W D, Kim S, Park J et al. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures[J]. Optics Express, 21, 15323-15334(2013).

    [78] You J, Kim Y J, Kim S W. GPU-accelerated white-light scanning interferometer for large-area, high-speed surface profile measurements[J]. International Journal of Nanomanufacturing, 8, 31(2012).

    [79] Park J, Kim S, Kim B S et al. Tuning range extension of pulse repetition rate using chirped fiber Bragg gratings[J]. Optics Express, 25, 1413-1420(2017).

    [80] Lu Y, Park J, Yu L D et al. 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser[J]. Applied Optics, 57, 2584-2589(2018).

    [81] Lu Y, Park J, Bian D et al. Simultaneous 3-D surface profiling of multiple targets by repetition rate scanning of a single femtosecond laser[J]. International Journal of Precision Engineering and Manufacturing, 21, 211-217(2020).

    [82] Wang Y, Xu G Y, Xiong S L et al. Large-field step-structure surface measurement using a femtosecond laser[J]. Optics Express, 28, 22946-22961(2020).

    [83] Shibuya K, Minamikawa T, Mizutani Y et al. Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase[J]. Optics Express, 25, 21947-21957(2017).

    [84] DeVerse R A, Coifman R R, Coppi A C et al. Application of spatial light modulators for new modalities in spectrometry and imaging[J]. Proceedings of SPIE, 4959, 12-22(2003).

    [85] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [86] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [87] Pham Q D, Hayasaki Y. Optical frequency comb profilometry using a single-pixel camera composed of digital micromirror devices[J]. Applied Optics, 54, A39-A44(2015).

    [88] Pham Q D, Hayasaki Y. Combining phase images measured in the radio frequency and the optical frequency ranges[J]. Optics Letters, 42, 2062-2065(2017).

    [89] Xu G Y, Wang Y, Xiong S L et al. Digital-micromirror-device-based surface measurement using heterodyne interferometry with optical frequency comb[J]. Applied Physics Letters, 118, 251104(2021).

    [90] Xu G Y, Wang Y, Chen J Y et al. Compression-coding-based surface measurement using a digital micromirror device and heterodyne interferometry of an optical frequency comb[J]. Optics Express, 29, 22240-22251(2021).

    [91] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [92] Zhao H H, Zhang Z Q, Xu X Y et al. Three-dimensional imaging by frequency-comb spectral interferometry[J]. Sensors, 20, 1743(2020).

    [93] Zhao H H, Xu X Y, Qian Z W et al. High precision underwater 3D imaging of non-cooperative target with frequency comb[J]. Optics & Laser Technology, 148, 107749(2022).

    [94] Xiong S L, Chen J Y, Zhou S Y et al. Influence of spectral resolution on dispersive interferometry of optical frequency comb[J]. Optics Communications, 503, 127464(2022).

    [95] Minoshima K, Matsumoto H, Zhang Z G et al. Simultaneous 3-D imaging using chirped ultrashort optical pulses[J]. Japanese Journal of Applied Physics, 33, L1348(1994).

    [96] Kato T, Uchida M, Minoshima K. No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb[J]. Scientific Reports, 7, 3670(2017).

    [97] Kato T, Uchida M, Tanaka Y et al. High-resolution 3D imaging method using chirped optical frequency combs based on convolution analysis of the spectral interference fringe[J]. OSA Continuum, 3, 20-30(2020).

    [98] Vicentini E, Wang Z H, van Gasse K et al. Dual-comb hyperspectral digital holography[J]. Nature Photonics, 15, 890-894(2021).

    Guanhao Wu, Liheng Shi, Erge Li. Surface Topography Measurement Technology Based on Optical Frequency Comb[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312013
    Download Citation