• Journal of Semiconductors
  • Vol. 42, Issue 4, 041306 (2021)
Jianou Huang1, Chao Li1, Rongguo Lu2, Lianyan Li3, and Zizheng Cao1
Author Affiliations
  • 1Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science & Technology of China, Chengdu 610054, China
  • 3College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • show less
    DOI: 10.1088/1674-4926/42/4/041306 Cite this Article
    Jianou Huang, Chao Li, Rongguo Lu, Lianyan Li, Zizheng Cao. Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. Journal of Semiconductors, 2021, 42(4): 041306 Copy Citation Text show less
    References

    [1]

    [2] P J Winzer. Beyond 100G Ethernet. IEEE Commun Mag, 48, 26(2010).

    [3] C Cole. Beyond 100G client optics. IEEE Commun Mag, 50, s58(2012).

    [4] X D Pang, O Ozolins, R Lin et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects. J Lightwave Technol, 38, 492(2020).

    [5] C Kachris, K Kanonakis, I Tomkos. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun Mag, 51, 39(2013).

    [6] E Agrell, M Karlsson, A R Chraplyvy et al. Roadmap of optical communications. J Opt, 18, 063002(2016).

    [7]

    [8]

    [9] A De La Oliva, X C Perez, A Azcorra et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel Commun, 22, 32(2015).

    [10] R S Tucker. High-speed modulation of semiconductor lasers. IEEE Trans Electron Devices, 32, 2572(1985).

    [11] N Zhu, Z Shi, Z Zhang et al. Directly modulated semiconductor lasers. IEEE J Sel Top Quantum Electron, 24, 1(2018).

    [12]

    [13] C Peucheret. Direct and external modulation of light. Experimental Course in Optical Communication(2009).

    [14] T Tadokoro, W Kobayashi, T Fujisawa et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J Lightwave Technol, 30, 2520(2012).

    [15] C C Shen, T C Hsu, Y W Yeh et al. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/S. Nanoscale Res Lett, 14, 1(2019).

    [16] S Yamaoka, N P Diamantopoulos, H Nishi et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat Photonics, 15, 28(2021).

    [17] D Che, Y Matsui, X Chen et al. 400-Gb/s direct modulation using a DFB+R laser. Opt Lett, 45, 3337(2020).

    [18] T Pfeiffer. Next generation mobile fronthaul and midhaul architectures. J Opt Commun Netw, 7, B38(2015).

    [19]

    [20]

    [21] J D Ralston, S Weisser, I Esquivias et al. Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J Quantum Electron, 29, 1648(1993).

    [22] J D Ralston, S Weisser, K Eisele et al. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide lasers. IEEE Photonics Technol Lett, 6, 1076(1994).

    [23]

    [24] S Weisser, E C Larkins, K Czotscher et al. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers. IEEE Photonics Technol Lett, 8, 608(1996).

    [25] Y Matsui, H Murai, S Arahira et al. 30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser. IEEE Photonics Technol Lett, 9, 25(1997).

    [26] I Vurgaftman, J R Meyer, L R Ram-Mohan. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 89, 5815(2001).

    [27] K Otsubo, M Matsuda, K Takada et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J Sel Top Quantum Electron, 15, 687(2009).

    [28] T Fukamachi, K Adachi, K Shinoda et al. Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers. IEEE J Sel Top Quantum Electron, 17, 1138(2011).

    [29] T Simoyama, M Matsuda, S Okumura et al. 40-Gbps transmission using direct modulation of 1.3-μm AlGaInAs MQW distributed-reflector lasers up to 70 °C. Optical Fiber Communication Conference, OWD3(2011).

    [30] W Kobayashi, T Ito, T Yamanaka et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 19, 1500908(2013).

    [31] M Matsuda, A Uetake, T Simoyama et al. 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate. IEEE J Sel Top Quantum Electron, 21, 241(2015).

    [32]

    [33]

    [34] M Radziunas, A Glitzky, U Bandelow et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J Sel Top Quantum Electron, 13, 136(2007).

    [35] U Troppenz, J Kreissl, M Möhrle et al. 40 Gbit/s directly modulated lasers: Physics and application. Proc SPIE, 7953, 79530F(2011).

    [36] J Kreissl, V Vercesi, U Troppenz et al. Up to 40 Gb/s directly modulated laser operating at low driving current: Buried-heterostructure passive feedback laser (BH-PFL). IEEE Photonics Technol Lett, 24, 362(2012).

    [37] S Mieda, N Yokota, W Kobayashi et al. Ultra-wide-bandwidth optically controlled DFB laser with external cavity. IEEE J Quantum Electron, 52, 1(2016).

    [38] Y Matsui, R Schatz, T Pham et al. 55 GHz bandwidth distributed reflector laser. J Lightwave Technol, 35, 397(2017).

    [39] G H Liu, G Y Zhao, J Q Sun et al. Experimental demonstration of DFB lasers with active distributed reflector. Opt Express, 26, 29784(2018).

    [40]

    [41] U Feiste. Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors. IEEE J Quantum Electron, 34, 2371(1998).

    [42] P Bardella, I Montrosset. A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth. IEEE J Sel Top Quantum Electron, 19, 1502408(2013).

    [43] G Morthier, R Schatz, O Kjebon. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J Quantum Electron, 36, 1468(2000).

    [44] K Vahala, A Yariv. Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics. Appl Phys Lett, 45, 501(1984).

    [45] K Vahala, J Paslaski, A Yariv. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser. Appl Phys Lett, 46, 1025(1985).

    [46] M Chaciński, R Schatz. Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers. IEEE J Quantum Electron, 46, 1360(2010).

    [47] L Zhang, J van Kerrebrouck, R Lin et al. Nonlinearity tolerant high-speed DMT transmission with 1.5-μm single-mode VCSEL and multi-core fibers for optical interconnects. J Lightwave Technol, 37, 380(2019).

    [48] L Zhang, J J Chen, E Agrell et al. Enabling technologies for optical data center networks: Spatial division multiplexing. J Lightwave Technol, 38, 18(2020).

    [49]

    [50]

    [51] S Kanazawa, H Yamazaki, Y Nakanishi et al. 214-gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J Lightwave Technol, 35, 418(2017).

    [52]

    [53] H Yamazaki, M Nagatani, F Hamaoka et al. Discrete multitone transmission at net data rate of 250 Gb/s using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. J Lightwave Technol, 35, 1300(2017).

    [54] H Mardoyan, M A Mestre, J M Estarán et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J Lightwave Technol, 35, 1253(2017).

    [55]

    [56]

    [57] S Lange, S Wolf, J Lutz et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J Lightwave Technol, 36, 97(2018).

    [58]

    [59]

    [60]

    [61] L Zhang, X Z Hong, X D Pang et al. Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Opt Lett, 43, 182(2018).

    [62]

    [63] J M Estaran, H Mardoyan, F Jorge et al. 140/180/204-Gbaud OOK transceiver for inter-and intra-data center connectivity. J Lightwave Technol, 37, 178(2019).

    [64]

    [65]

    [66]

    [67] C Prodaniuc, N Stojanovic, C S Xie et al. 3-Dimensional PAM-8 modulation for 200 Gbps/lambda optical systems. Opt Commun, 435, 1(2019).

    [68]

    [69]

    [70]

    [71]

    [72] M Chaciński, U Westergren, B Stoltz et al. Monolithically integrated 100 GHz DFB-TWEAM. J Lightwave Technol, 27, 3410(2009).

    [73]

    Jianou Huang, Chao Li, Rongguo Lu, Lianyan Li, Zizheng Cao. Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. Journal of Semiconductors, 2021, 42(4): 041306
    Download Citation