• Photonics Research
  • Vol. 11, Issue 7, 1326 (2023)
Rosario Martínez-Herrero1, David Maluenda2, Marcos Aviñoá2, Artur Carnicer2, Ignasi Juvells2, and Ángel S. Sanz1、*
Author Affiliations
  • 1Departamento de Óptica, Universidad Complutense de Madrid (UCM), Ciudad Universitaria, 28040 Madrid, Spain
  • 2Facultat de Física, Departament de Física aplicada, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain
  • show less
    DOI: 10.1364/PRJ.488703 Cite this Article Set citation alerts
    Rosario Martínez-Herrero, David Maluenda, Marcos Aviñoá, Artur Carnicer, Ignasi Juvells, Ángel S. Sanz. Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach[J]. Photonics Research, 2023, 11(7): 1326 Copy Citation Text show less
    References

    [1] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [2] B. A. Knyazev, V. G. Serbo. Beams of photons with nonzero projections of orbital angular momenta: new results. Phys. Usp., 61, 449-479(2018).

    [3] A. V. Andreev, O. A. Shoutova, S. M. Trushin, S. Y. Stremoukhov. 3D Stokes parameters for vector focal fields. J. Opt. Soc. Am. B, 39, 1775-1782(2022).

    [4] E. Jera, S. Zhou, Q. Zhan. Generation of three-dimensionally homogenized focal spot with uniform intensity distribution using vectorial optical fields. Opt. Commun., 464, 125530(2020).

    [5] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [6] D. Maluenda, R. Martínez-Herrero, I. Juvells, A. Carnicer. Synthesis of highly focused fields with circular polarization at any transverse plane. Opt. Express, 22, 6859-6867(2014).

    [7] D. P. Biss, T. G. Brown. Polarization-vortex-driven second-harmonic generation. Opt. Lett., 28, 923-925(2003).

    [8] C. J. R. Sheppard, A. Choudhury. Annular pupils, radial polarization, and superresolution. Appl. Opt., 43, 4322-4327(2004).

    [9] Y. Gorodetski, A. Niv, V. Kleiner, E. Hasman. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett., 101, 043903(2008).

    [10] L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, H. P. Urbach. Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett., 104, 083903(2010).

    [11] A. Carnicer, I. Juvells, B. Javidi, R. Martínez-Herrero. Optical encryption in the longitudinal domain of focused fields. Opt. Express, 24, 6793-6801(2016).

    [12] Q. Zhan. Properties of circularly polarized vortex beams. Opt. Lett., 31, 867-869(2006).

    [13] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte. Tailoring of arbitrary optical vector beams. New J. Phys., 9, 78(2007).

    [14] X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, H.-T. Wang. A new type of vector fields with hybrid states of polarization. Opt. Express, 18, 10786-10795(2010).

    [15] X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, H.-T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [16] I. Moreno, C. Iemmi, J. Campos, M. J. Yzuel. Jones matrix treatment for optical Fourier processors with structured polarization. Opt. Express, 19, 4583-4594(2011).

    [17] D. Maluenda, I. Juvells, R. Martínez-Herrero, A. Carnicer. Reconfigurable beams with arbitrary polarization and shape distributions at a given plane. Opt. Express, 21, 5432-5439(2013).

    [18] E. H. Waller, G. von Freymann. Independent spatial intensity, phase and polarization distributions. Opt. Express, 21, 28167-28174(2013).

    [19] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [20] R. Martínez-Herrero, I. Juvells, A. Carnicer. On the physical realizability of highly focused electromagnetic field distributions. Opt. Lett., 38, 2065-2067(2013).

    [21] C.-S. Guo, Z.-Y. Rong, S.-Z. Wang. Double-channel vector spatial light modulator for generation of arbitrary complex vector beams. Opt. Lett., 39, 386-389(2014).

    [22] Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, C.-S. Guo. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt. Express, 22, 1636-1644(2014).

    [23] R. Martínez-Herrero, D. Maluenda, I. Juvells, A. Carnicer. Synthesis of light needles with tunable length and nearly constant irradiance. Sci. Rep., 8, 2657(2018).

    [24] L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown. Longitudinal field modes probed by single molecules. Phys. Rev. Lett., 86, 5251-5254(2001).

    [25] A. Bouhelier, M. R. Beversluis, L. Novotny. Near-field scattering of longitudinal fields. Appl. Phys. Lett., 82, 4596-4598(2003).

    [26] K. Kitamura, K. Sakai, S. Noda. Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam. Opt. Express, 18, 4518-4525(2010).

    [27] B. Jia, X. Gan, M. Gu. Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy. Appl. Phys. Lett., 86, 131110(2005).

    [28] J. Wang, Q. Wang, M. Zhang. Development and prospect of near-field optical measurements and characterizations. Front. Optoelectron., 5, 171-181(2012).

    [29] S. N. Khonina, S. V. Karpeev, S. V. Alferov, D. A. Savelyev, J. Laukkanen, J. Turunen. Experimental demonstration of the generation of the longitudinal e-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J. Opt., 15, 085704(2013).

    [30] S. V. Alferov, S. N. Khonina, S. V. Karpeev. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J. Opt. Soc. Am. A, 31, 802-807(2014).

    [31] V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, A. A. Kovalev. Analysis of the shape of a subwavelength focal spot for the linearly polarized light. Appl. Opt., 52, 330-339(2013).

    [32] W. Chen, Q. Zhan. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt. Lett., 34, 722-724(2009).

    [33] S. N. Khonina, S. V. Alferov, S. V. Karpeev. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt. Lett., 38, 3223-3226(2013).

    [34] A. Carnicer, I. Juvells, D. Maluenda, R. Martínez-Herrero, P. M. Mejas. On the longitudinal component of paraxial fields. Eur. J. Phys., 33, 1235-1247(2012).

    [35] F. Maucher, S. Skupin, S. A. Gardiner, I. G. Hughes. Creating complex optical longitudinal polarization structures. Phys. Rev. Lett., 120, 163903(2018).

    [36] S. N. Khonina, A. V. Ustinov, A. P. Porfirev. Vector Lissajous laser beams. Opt. Lett., 45, 4112-4115(2020).

    [37] L. Zundel, J. R. Deop-Ruano, R. Martínez-Herrero, A. Manjavacas. Lattice resonances excited by finite-width light beams. ACS Omega, 7, 31431-31441(2022).

    [38] M. Gell-Mann. Symmetries of baryons and mesons. Phys. Rev., 125, 1067-1084(1962).

    [39] T. Setälä, A. Shevchenko, M. Kaivola, A. T. Friberg. Degree of polarization for optical near fields. Phys. Rev. E, 66, 016615(2002).

    [40] C. J. R. Sheppard. Jones and Stokes parameters for polarization in three dimensions. Phys. Rev. A, 90, 023809(2014).

    [41] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [42] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. London A, 253, 358-379(1959).

    [43] D. Maluenda, M. Aviñoá, K. Ahmadi, R. Martínez-Herrero, A. Carnicer. Experimental estimation of the longitudinal component of a highly focused electromagnetic field. Sci. Rep., 11, 17992(2021).

    [44] R. Martínez-Herrero, A. Carnicer, I. Juvells, A. S. Sanz. Uncertainty principle for axial power content of highly focused fields. Opt. Express, 28, 29676-29690(2020).

    [45] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information(2000).

    [46] M. Nieto-Vesperinas, X. Xu. The complex Maxwell stress tensor theorem: the imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces. Light Sci. Appl., 11, 297(2022).

    [47] V. Arrizón. Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach. Opt. Lett., 28, 1359-1361(2003).

    [48] B. Hao, J. Leger. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express, 15, 3550-3556(2007).

    [49] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 27-29(1978).

    Rosario Martínez-Herrero, David Maluenda, Marcos Aviñoá, Artur Carnicer, Ignasi Juvells, Ángel S. Sanz. Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach[J]. Photonics Research, 2023, 11(7): 1326
    Download Citation