• Photonics Research
  • Vol. 11, Issue 7, 1326 (2023)
Rosario Martínez-Herrero1, David Maluenda2, Marcos Aviñoá2, Artur Carnicer2, Ignasi Juvells2, and Ángel S. Sanz1、*
Author Affiliations
  • 1Departamento de Óptica, Universidad Complutense de Madrid (UCM), Ciudad Universitaria, 28040 Madrid, Spain
  • 2Facultat de Física, Departament de Física aplicada, Universitat de Barcelona (UB), Martí i Franquès 1, 08028 Barcelona, Spain
  • show less
    DOI: 10.1364/PRJ.488703 Cite this Article Set citation alerts
    Rosario Martínez-Herrero, David Maluenda, Marcos Aviñoá, Artur Carnicer, Ignasi Juvells, Ángel S. Sanz. Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach[J]. Photonics Research, 2023, 11(7): 1326 Copy Citation Text show less

    Abstract

    A precise knowledge of the polarization state of light is crucial in technologies that involve the generation and application of structured light fields. The implementation of efficient methods to determine and characterize polarization states is mandatory; more importantly, these structured light fields must be at any spatial location at a low expense. Here, we introduce a new characterization method that relies on a rather convenient description of electric fields without neglecting their 3D nature. This method is particularly suitable for highly focused fields, which exhibit important polarization contributions along their propagation direction in the neighborhood of the focal region; i.e., the contributions out of the planes transverse to the optical axis, conventionally used to specify the polarization state of these fields. As shown, the method allows the extraction of information about the three field components at relatively low computational and experimental costs. Furthermore, it also allows characterization of the polarization state of a field in a rather simple manner. To check the feasibility and reliability of the method, we determined both analytically and experimentally the local polarization states for a series of benchmark input fields with it, finding excellent agreement between the theory and experiment.
    E(r,z)=Er(r,z)+iEi(r,z),

    View in Article

    P(r,z)=cosα(r,z)Er(r,z)+sinα(r,z)Ei(r,z),(2a)

    View in Article

    Q(r,z)=sinα(r,z)Er(r,z)+cosα(r,z)Ei(r,z),(2b)

    View in Article

    tan2α(r,z)=2Er(r,z)·Ei(r,z)Er(r,z)2Ei(r,z)2.

    View in Article

    N(r,z)=P(r,z)×Q(r,z).

    View in Article

    E(r,z)=[P(r,z)+iQ(r,z)]eiα(r,z),

    View in Article

    Er(r,z)×Ei(r,z)=P(r,z)×Q(r,z)=N(r,z).

    View in Article

    EP(r,z)=P(r,z)P(r,z)·E(r,z)=P(r,z)eiα(r,z),(7a)

    View in Article

    EQ(r,z)=Q(r,z)Q(r,z)·E(r,z)=iQ(r,z)eiα(r,z),(7b)

    View in Article

    EN(r,z)=N(r,z)N(r,z)·E(r,z)=0.(7c)

    View in Article

    S0(r,z)=|Ex(r,z)|2+|Ey(r,z)|2,(8a)

    View in Article

    S1(r,z)=|Ex(r,z)|2|Ey(r,z)|2,(8b)

    View in Article

    S2(r,z)=2Re[Ex*(r,z)Ey(r,z)],(8c)

    View in Article

    S3(r,z)=2Im[Ex*(r,z)Ey(r,z)],(8d)

    View in Article

    S˜0(r,z)=P(r,z)2+Q(r,z)2=Er(r,z)2+Ei(r,z)2,(9a)

    View in Article

    S˜1(r,z)=P(r,z)2Q(r,z)2=Er(r,z)2Ei(r,z)2cos2α(r,z),(9b)

    View in Article

    S˜2(r,z)=0,(9c)

    View in Article

    S˜3(r,z)=2N(r,z)=2P(r,z)×Q(r,z)=2Er(r,z)×Ei(r,z),(9d)

    View in Article

    E(r,ϕ,z)=A0θ002πE0(θ,φ)eikrsinθcos(ϕφ)eikzcosθsinθdθdφ,

    View in Article

    E0(θ,φ)=cosθ[(Es·e^1)e^1+(Es·e^2)e^2],

    View in Article

    e^1=(sinφcosφ0),e^2=(cosθcosφcosθsinφsinθ),e^2=(cosφsinφ0).

    View in Article

    Es(X)(θ)=g(θ)u^X,

    View in Article

    g(θ)=eσ2(cosθα¯1cosθ0)2cosθ(1+cosθ),

    View in Article

    u^X=(cosθ¯/2eiφ¯sinθ¯/2),

    View in Article

    g(θ)=sinθeσ2(cosθα¯1cosθ0)2cosθ(1+cosθ),

    View in Article

    u^r=(cosφsinφ).

    View in Article

    u^l=(10).

    View in Article

    E0(l)(θ,φ)=12cosθg(θ)(1+cosθ+cos2φ(cosθ1)sinφ(cosθ1)2sinθcosφ),

    View in Article

    E(l)(r,ϕ)=(D0(r)+cos2ϕD2(r)sin2ϕD2(r)2icosϕD1(r)),

    View in Article

    D0(r)=πA0θ0cosθg(θ)(1+cosθ)J0(krsinθ)sinθdθ,(21a)

    View in Article

    D1(r)=πA0θ0cosθg(θ)sinθJ1(krsinθ)sinθdθ,(21b)

    View in Article

    D2(r)=πA0θ0cosθg(θ)(1cosθ)J2(krsinθ)sinθdθ,(21c)

    View in Article

    S0(r,ϕ)=D02(r)+D22(r)+2cos2ϕD0(r)D2(r),(22a)

    View in Article

    S1(r,ϕ)=D02(r)+cos4ϕD22(r)+2cos2ϕD0(r)D2(r),(22b)

    View in Article

    S2(r,ϕ)=2sin2ϕD0(r)D2(r)+sin4ϕD22(r),(22c)

    View in Article

    S3(r,ϕ)=0.(22d)

    View in Article

    Er(l)(r,ϕ)=(D0(r)+cos2ϕD2(r)sin2ϕD2(r)0),Ei(l)(r,ϕ)=(002cosϕD1(r)),

    View in Article

    N(l)(r,ϕ)=2D1(r)cosϕ(sin2ϕD2(r)D0(r)+cos2ϕD2(r)0).

    View in Article

    S˜0(r,ϕ)=D02(r)+D22(r)+2cos2ϕD0(r)D2(r)+4cos2ϕD12(r),(25a)

    View in Article

    S˜1(r,ϕ)=D02(r)+D22(r)+2cos2ϕD0(r)D2(r)4cos2ϕD12(r),(25b)

    View in Article

    S˜2(r,ϕ)=0,(25c)

    View in Article

    S˜3(r,ϕ)=4|cosϕ||D1(r)|D02(r)+D22(r)+2cos2ϕD0(r)D2(r).(25d)

    View in Article

    u^c=12(1γi),

    View in Article

    E0(c)(θ,φ)=g(θ)22(1+cosθ+eγ2iφ(cosθ1)γi(1+cosθ)γieγ2iφ(cosθ1)2sinθeγiφ),

    View in Article

    E(c)(r,ϕ)=(D0(r)+eγ2iϕD2(r)γiD0(r)γieγ2iϕD2(r)2ieγiϕD1(r)).

    View in Article

    S0(r,ϕ)=2[D02(r)+D22(r)],(29a)

    View in Article

    S1(r,ϕ)=4cos2ϕD0(r)D2(r),(29b)

    View in Article

    S2(r,ϕ)=4sin2ϕD0(r)D2(r),(29c)

    View in Article

    S3(r,ϕ)=2γ[D02(r)D22(r)],(29d)

    View in Article

    Er(c)(r,ϕ)=(D0(r)+cos2ϕD2(r)sin2ϕD2(r)γ2sinϕD1(r)),Ei(c)(r,ϕ)=(γsin2ϕD2(r)γD0(r)γcos2ϕD2(r)2cosϕD1(r)),

    View in Article

    P(c)(r,ϕ)=[D0(r)+D2(r)](cosϕsinϕ0),

    View in Article

    Q(c)(r,ϕ)=[D0(r)D2(r)](γsinϕγcosϕ2D1(r)D0(r)D2(r)),

    View in Article

    N(c)(r,ϕ)=2[D0(r)+D2(r)]D1(r)(sinϕcosϕγ[D0(r)D2(r)]2D1(r)),

    View in Article

    S˜0(r,ϕ)=2[D02(r)+2D12(r)+D22(r)],(34a)

    View in Article

    S˜1(r,ϕ)=4[D0(r)D2(r)D12(r)],(34b)

    View in Article

    S˜2(r,ϕ)=0,(34c)

    View in Article

    S˜3(r,ϕ)=2|D0(r)+D2(r)|[D0(r)D2(r)]2+4D12(r).(34d)

    View in Article

    u^r=(cosϕsinϕ),

    View in Article

    E(r)(r,ϕ)=(icosϕD1(r)isinϕD1(r)D0(r)),

    View in Article

    D0(r)=πA0θ0cosθg(θ)sinθJ0(krsinθ)sinθdθ,(37a)

    View in Article

    D1(r)=πA0θ0cosθg(θ)cosθJ1(krsinθ)sinθdθ.(37b)

    View in Article

    S0(r,ϕ)=D12(r),(38a)

    View in Article

    S1(r,ϕ)=cos2ϕD12(r),(38b)

    View in Article

    S2(r,ϕ)=sin2ϕD12(r),(38c)

    View in Article

    S3(r,ϕ)=0.(38d)

    View in Article

    Er(r)(r,ϕ)=D0(r)(001),Ei(r)(r,ϕ)=D1(r)(cosϕsinϕ0),

    View in Article

    N(r)(r,ϕ)=D0(r)D1(r)(sinϕcosϕ0).

    View in Article

    S˜0(r,ϕ)=D02(r)+D12(r),(41a)

    View in Article

    S˜1(r,ϕ)=D02(r)D12(r),(41b)

    View in Article

    S˜2(r,ϕ)=0,(41c)

    View in Article

    S˜3(r,ϕ)=2|D0(r)D1(r)|.(41d)

    View in Article

    Rosario Martínez-Herrero, David Maluenda, Marcos Aviñoá, Artur Carnicer, Ignasi Juvells, Ángel S. Sanz. Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach[J]. Photonics Research, 2023, 11(7): 1326
    Download Citation