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A precise knowledge of the polarization state of light is crucial in technologies that involve the generation and
application of structured light fields. The implementation of efficient methods to determine and characterize
polarization states is mandatory; more importantly, these structured light fields must be at any spatial location
at a low expense. Here, we introduce a new characterization method that relies on a rather convenient description
of electric fields without neglecting their 3D nature. This method is particularly suitable for highly focused fields,
which exhibit important polarization contributions along their propagation direction in the neighborhood of the
focal region; i.e., the contributions out of the planes transverse to the optical axis, conventionally used to specify the
polarization state of these fields. As shown, the method allows the extraction of information about the three field
components at relatively low computational and experimental costs. Furthermore, it also allows characterization of
the polarization state of a field in a rather simple manner. To check the feasibility and reliability of the method, we
determined both analytically and experimentally the local polarization states for a series of benchmark input fields
with it, finding excellent agreement between the theory and experiment. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.488703

1. INTRODUCTION

The generation of structured light has acquired a pivotal role in
different technological fields. These fields cover areas as diverse
as the design and application of nanostructures, ultrahigh-
resolution optical microscopy, ultradense information storage
and transfer, high-harmonic generation (HHG), and terahertz
(THz) radiation generation, just to cite a few remarkable exam-
ples. Hence, methods to determine and characterize the pro-
perties of structured light [both its dynamic field parameters
(e.g., energy flux, momentum, and angular momentum) and
its polarization features] are also receiving much atten-
tion [1–5].

Highly focused fields with a nonhomogeneous polarization
state distribution constitute a particular instance within this
scenario because of their potential applications in fields such
as microscopy, nonlinear optics, and plasmonics [5–37]. In
these circumstances, the (input) vector field at the entrance pu-
pil of the focusing system must be tailored to the specific re-
quirements involved in the problem or experiment considered.
A combination of diffractive, interferometric, and holographic
techniques is often used to achieve full control over the com-
plex amplitude and polarization distributions of the input field.

That scenario leads us to a nontrivial question: how can we
specify the polarization state in the focal region of imaging sys-
tems with a high numerical aperture (NA), where the 3D
nature of the electromagnetic field cannot be neglected? In
two dimensions, for instance, choosing the z axis as the refer-
ence or privileged direction allows the specification of the
polarization state by simply inspecting the time behavior exhib-
ited by the field transverse components. This procedure works
very well for plane waves and for locally nearly flat and parallel
wavefronts. However, what about more general 3D scenarios,
where the wavefronts might undergo important space variations
from point to point, as it happens with highly focused fields? In
other words, how can we characterize the polarization state of a
general 3D field if the current understanding of polarization lies
on a 2D representation?

An answer to that question has been proposed in the liter-
ature in terms of a generalization of the Stokes parameters
[38–40], based on the so-called Gell-Mann matrices, borrowed
from the field of particle physics. These eight 3 × 3 traceless,
Hermitian matrices span the usual Lie algebra because they
can generate elements of the SU(3) symmetry group, in analogy
to the three 2 × 2 traceless Pauli matrices that generate the
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SU(2) symmetry group. In this work, though, instead of di-
rectly dealing with the complexity inherent to the full 3D prob-
lem, we introduce an alternative method that enables efficient
theoretical and experimental analysis, but without abandoning
the conceptual appeal involved in the usual formulation of 2D
Stokes parameters.

More specifically, our method relies on the known idea that
the field can be recast in terms of its real and imaginary vector
components [41]. By means of a convenient local rotation of
these components, we can determine the direction vectors that
specify the orthogonal directions in the Argand–Gauss plane
that contains the field components at a specific point. In the
case of highly focused paraxial fields, this means that at any
given position along the optical z axis (where the 2D transverse
Stokes parameters are computed), there is a family of planes,
each one characterized by its own local normal direction vector.
This direction is used to describe locally the polarization state
without requiring more sophisticated calculations; for instance,
the calculations mentioned above based on Gell-Mann matri-
ces. We know that the usual transverse Stokes parameters Sα
(α � 0, 1, 2, 3) only provide (or are obtained from) informa-
tion from the transverse field components, which implies ne-
glecting the 3D nature of the field. In sharp contrast, the
method proposed here allows a full 3D characterization of
the polarization state. To this end, the method relies on infor-
mation supplied by both a new class of local Stokes parameters
(henceforth denoted as S̃α) and the (also locally computed) di-
rection vector normal to the plane that contains the vibrat-
ing field.

To illustrate the feasibility and reliability of the methodol-
ogy, 3D highly focused fields generated by spatially localized
fields with a Gaussian envelop and different polarization states
are considered. The three components for these fields are de-
termined analytically at the focal plane by means of the
Richards–Wolf integral [42] and measured experimentally by
making use of the procedure in Ref. [43]. In both theory
and experiment, the local plane containing the vector field is
determined from the field components, which allows the value
for the local Stokes parameters around the focal region to be
inferred. As shown, there is an excellent agreement between
the theory and the experiment when the results obtained from
the numerical simulations and the experimental data are com-
pared. Although the present analysis concerns the focal area, it
should be stressed that it can readily be extended to any other
region or plane along the system’s optical axis since the method
itself is not limited to the focal region.

2. THEORY

Consider an arbitrary quasi-monochromatic vector field E�r�
with three nonvanishing components. Since focusing (and
propagation, in general) takes place mainly along the z direc-
tion, this field can be recast as

E�r⊥, z� � Er�r⊥, z� � iEi�r⊥, z�, (1)
where r⊥ � �x, y� is the transverse position vector, and
Er�r⊥, z� and Ei�r⊥, z� are both real vector fields in a 3D space.
These two vector fields can, in turn, be rewritten at any spatial
point �r⊥, z� in terms of a local, orthogonal vector basis set. A
first suitable choice to determine this basis set consists in

directly applying the well-known Gram–Schmidt orthogonal-
ization procedure. Here, we considered an alternative and more
convenient choice, consisting of constructing a basis set formed
by two orthogonal vectors contained within the same plane that
also contains Er and Ei, and the normal vector that defines this
plane (the third component of the basis set).

Specifically, this is accomplished first by means of a local
rotation at �r⊥, z� [41]:
P�r⊥, z� � cos α�r⊥, z�Er�r⊥, z� � sin α�r⊥, z�Ei�r⊥, z�,

(2a)

Q �r⊥, z� � −sin α�r⊥, z�Er�r⊥, z� � cos α�r⊥, z�Ei�r⊥, z�,
(2b)

where the spatially dependent local rotation angle α�r⊥, z� is

tan 2α�r⊥, z� �
2Er�r⊥, z� · Ei�r⊥, z�

kEr�r⊥, z�k2 − kEi�r⊥, z�k2
: (3)

This angle arises from the orthogonality condition
P�r⊥, z� ·Q �r⊥, z� � 0. Once P�r⊥, z� and Q �r⊥, z� are
known, the normal to the plane containing these two new vec-
tor fields is then readily obtained as

N�r⊥, z� � P�r⊥, z� ×Q �r⊥, z�: (4)

Physically, this normal vector coincides with the electric con-
tribution to the spin angular momentum density [1]. In terms
of the new basis set, the vector field E�r⊥, z� reads as

E�r⊥, z� � �P�r⊥, z� � iQ �r⊥, z��eiα�r⊥ , z�, (5)

with its polarization plane being perpendicular to N�r⊥, z�.
Note that this also holds if we directly consider the real and
imaginary components of the field by virtue of the invariance
property

Er�r⊥, z� × Ei�r⊥, z� � P�r⊥, z� ×Q�r⊥, z� � N�r⊥, z�: (6)

The contribution of the new basis vectors to the 3D field
E�r⊥, z� is

EP�r⊥, z� �
P�r⊥, z�
kP�r⊥, z�k

· E�r⊥, z� � kP�r⊥, z�keiα�r⊥ , z�,

(7a)

EQ�r⊥, z� �
Q�r⊥, z�

kQ�r⊥, z�k
· E�r⊥, z� � ikQ �r⊥, z�keiα�r⊥ , z�,

(7b)

EN �r⊥, z� �
N�r⊥, z�

kN�r⊥, z�k
· E�r⊥, z� � 0: (7c)

These expressions show that the field is, in general, elliptically
polarized within the plane normal to N�r⊥, z�.

Because the field is contained within a plane determined
locally by the normal N�r⊥, z�, we introduce a set of local
Stokes parameters, defined in a similar way to the usual trans-
verse Stokes parameters; that is, if the latter are given as

S0�r⊥, z� � jEx�r⊥, z�j2 � jEy�r⊥, z�j2, (8a)

S1�r⊥, z� � jEx�r⊥, z�j2 − jEy�r⊥, z�j2, (8b)
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S2�r⊥, z� � 2Re�E�
x �r⊥, z�Ey�r⊥, z��, (8c)

S3�r⊥, z� � 2 Im�E�
x �r⊥, z�Ey�r⊥, z��, (8d)

in terms of the transverse components of the field E�r⊥, z�,
then, by replacing the x and y components with the
P�r⊥, z� and Q �r⊥, z� vector fields, we obtain the expressions
for the new local Stokes parameters:

S̃0�r⊥, z� � kP�r⊥, z�k2 � kQ �r⊥, z�k2

� kEr�r⊥, z�k2 � kEi�r⊥, z�k2, (9a)

S̃1�r⊥, z� � kP�r⊥, z�k2 − kQ�r⊥, z�k2

� kEr�r⊥, z�k2 − kEi�r⊥, z�k2
cos 2α�r⊥, z�

, (9b)

S̃2�r⊥, z� � 0, (9c)

S̃3�r⊥, z� � 2kN�r⊥, z�k � 2kP�r⊥, z� ×Q �r⊥, z�k
� 2kEr�r⊥, z� × Ei�r⊥, z�k, (9d)

which involve information about all three components of the
field. Furthermore, note that the dependence on Er�r⊥, z� and
Ei�r⊥, z� on the right-hand side of the last equality in all these
expressions gives us a precise idea of how to relate the exper-
imentally inferred field with the new Stokes parameters.
Indeed, the fact that these new parameters contain information
about both the amplitude and the phase of the three field com-
ponents constitutes a challenge from an experimental point of
view because a reliable method must be devised to extract such
information. To cope with the task, we used a method based on
imposing Gauss’ law to the measured transverse field, which
avoids unwanted direct interactions with an intermediate
material medium. Further details on this experimental method
are briefly accounted for in Appendix A.

So far, the formalism above has not been particularized to
any specific type of field; in principle, it can be applied to any
arbitrary field. Due to their intrinsic fundamental and techno-
logical interest, though, let us turn our attention to highly fo-
cused fields, taking them as a benchmark to compare the theory
and experiment. Let us analyze the field arising from a mono-
chromatic field incident on the entrance pupil of an aplanatic
focusing system with a high NA. This focusing system is illus-
trated in Fig. 1, which shows the different reference coordinate
systems and variables of interest. The highly focused field that
results can be described, at the focal region, in terms of the
so-called Richards–Wolf integral [42],

E�r,ϕ, z�

� A
Z

θ0

0

Z
2π

0

E0�θ,φ�eikr sin θ cos�ϕ−φ�eikz cos θ sin θdθdφ,

(10)

where �r,ϕ, z� denote the cylindrical coordinates in that re-
gion, while θ and φ represent, respectively, the polar and azi-
muthal angles at the reference Gaussian sphere. In this integral,
the expression for the input vector angular spectrum reads as

E0�θ,φ� �
ffiffiffiffiffiffiffiffiffiffi
cos θ

p
��Es · ê1�ê1 � �Es · ê 02�ê2�, (11)

where Es is the transverse field distribution at the entrance
pupil, with the unit vectors defined as

ê1 �
� −sin φ

cos φ
0

�
, ê2 �

� cos θ cos φ
cos θ sin φ
−sin θ

�
,

ê 02 �
� cos φ
sin φ
0

�
:

(12)

Specifically, ê1 and ê2 point, respectively, along the azimuthal
and radial directions, while ê 02 is the projection of ê2 onto the
entrance pupil plane. Regarding other parameters in the inte-
gral [Eq. (10)]: A is a constant, k � 2π∕λ is the wave number,
and θ0 � maxfθg is the semi-aperture angle when a numerical
aperture NA � sin θ0 is considered.

As shown in Ref. [44], certain paraxial incident fields satisfy
an uncertainty principle. This happens, for instance, when the
transverse field distribution is

E�X �
s �θ� � g�θ�ûX , (13)

where the subscript X denotes a generic polarization state (see
below), and the amplitude g�θ� is given by the functional form

g�θ� � e−
σ
2� cos θ−ᾱ

1−cos θ0
�2ffiffiffiffiffiffiffiffiffiffi

cos θ
p

�1� cos θ� , (14)

with ᾱ being a constant and σ controlling the width of the dis-
tribution [44]; see the blue solid line in Fig. 2. The polarization
state is specified by the unit vector

ûX �
�

cos θ̄∕2
eiφ̄ sin θ̄∕2

�
, (15)

where 0 ≤ θ̄ ≤ π and 0 ≤ φ̄ < 2π to map all points on the Bloch
sphere (isomorphic to the Poincaré one), as seen in Fig. 3. We
specifically consider this notation because of the potential interest
for the method in quantum optics and quantum technologies [45].
Denoting the Cartesian directions in this sphere arbitrarily by x̄, ȳ,
and z̄, we follow the convention that the north and south poles
(extrema along the z̄ axis) correspond to horizontal and vertical
polarization states (X � H ,V ), respectively, while the two circular
polarization states (X � R, L) are on both extrema along the ȳ axis
(θ̄ � π∕2 and φ̄ � π∕2, 3π∕2). The third natural polarization
basis, described by the diagonal and anti-diagonal polarization
states (X � D,A), corresponds to both extrema along the x̄ axis
(θ̄ � π∕2 and φ̄ � 0, π). All other points on the sphere represent
elliptical polarization states with different degrees of eccentricity.

Fig. 1. Diagram of the focusing system (microscope objective) illus-
trating the reference coordinate systems and the variables involved in
the process [44].
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The field above represents situations characterized by a uni-
form polarization at the input plane. It is thus interesting to also
investigate the case of input fields with a nonuniform polari-
zation state. This is the case of radially polarized fields, with a
functional form like that of the field in Eq. (13), although its
amplitude is slightly modified with a prefactor sin θ to avoid
the singularity at the origin; i.e.,

g�θ� � sin θe−
σ
2� cos θ−ᾱ

1−cos θ0
�2ffiffiffiffiffiffiffiffiffiffi

cos θ
p

�1� cos θ� , (16)

as shown by the orange solid line in Fig. 2, and with the polari-
zation state being described by a unit vector depending on the
azimuthal angle,

ûr �
�
cos φ
sin φ

�
: (17)

Let us now analyze these cases in more detail from a theo-
retical point of view before considering the corresponding
experiments.

A. Linearly Polarized Input Fields
First, we consider an incident field with horizontal polarization
[θ̄ � φ̄ � 0 in Eq. (15)]:

ûl �
�
1
0

�
: (18)

The input vector angular spectrum is

E�l�
0 �θ,φ� � 1

2

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ�

 
1� cos θ� cos 2φ�cos θ − 1�

sin φ�cos θ − 1�
−2 sin θ cos φ

!
,

(19)

after substituting Eq. (13) into Eq. (11). With this angular
spectrum, the Richards–Wolf integral in Eq. (10) renders

E�l��r,ϕ� �
�D0�r� � cos 2ϕD2�r�

sin 2ϕD2�r�
−2i cos ϕD1�r�

�
, (20)

which is an expression for the field at the focal plane (z � 0)
and is a function of the auxiliary radial integrals

D0�r� � πA
Z

θ0

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ��1� cos θ�J0�kr sin θ� sin θdθ,

(21a)

D1�r� � πA
Z

θ0

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ� sin θJ1�kr sin θ� sin θdθ,

(21b)

D2�r� � πA
Z

θ0

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ��1 − cos θ�J2�kr sin θ� sin θdθ,

(21c)

with Jn�kr sin θ� denoting the Bessel function of the first kind
and order n. Note that the polarization state displayed by
Eq. (20) is going to depend on the value acquired by these in-
tegrals at every point in the focal plane.

The dependence on r of these three integrals is shown in
Fig. 4(a) for σ � 2 and NA � 0.75, which are the values also
considered in the experiments here. We observed that the
contribution from D0 around the focal region (i.e., within
the region r ≲ λ∕2) is much more prominent than the contri-
butions arising from D1 and, more particularly, D2, which is al-
most negligible. In this sense, by inspecting Eq. (20), we noticed
that, although the field polarization is seemingly highly nonuni-
form, in a good approximation we can say that the field is mainly
polarized along the x direction, which is true for φ � π∕2 or
3π∕2; i.e., along the direction x � 0. Nonetheless, because
of the non-negligible contribution of D1 around r ∼ λ∕2, there
will be a slight trace of elliptical polarization contained within
the plane XZ , although with eccentricity modulated by the azi-
muthal angle. Interestingly, if we compute the usual transverse
Stokes parameters for this case, we obtain

S0�r,ϕ� � D2
0�r� � D2

2�r� � 2 cos 2ϕD0�r�D2�r�, (22a)

S1�r,ϕ� � D2
0�r� � cos 4ϕD2

2�r� � 2 cos 2ϕD0�r�D2�r�,
(22b)

Fig. 3. Bloch sphere diagram illustrating the state of homogeneous
polarization uX [Eq. (15)]. Along the different axes are the six more
representative elements of the three usual two-vector basis sets:
fuH , uV g, fuD, uAg, and fuR , uLg.

Fig. 2. Blue and orange solid lines represent the field amplitudes in,
respectively, Eqs. (14) and (16) multiplied by the prefactor

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
, as

it appears in Eq. (11). The vertical dashed line denotes the angular
value associated with the numerical aperture considered here.
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S2�r,ϕ� � 2 sin 2ϕD0�r�D2�r� � sin 4ϕD2
2�r�, (22c)

S3�r,ϕ� � 0: (22d)

According to these parameters, there is no trace of elliptical
polarization. Rather, taking into account the relative weight
of the different contributions, we find that the polarization state
is essentially linear (horizontal), as S0 ≈ S1, S2 ≈ 0, and S3 � 0.

If we now apply our method, from the real and imaginary
components of the field at the focal plane, we get

E�l�
r �r,ϕ� �

0
B@

D0�r� � cos 2ϕD2�r�
sin 2ϕD2�r�

0

1
CA,

E�l�
i �r,ϕ� �

0
B@

0

0

−2 cos ϕD1�r�

1
CA, (23)

which are already mutually orthogonal; hence P�l� andQ �l� can
be directly identified with E�l�

r and E�l�
i , respectively, as

α�r� � 0 for all values of r. Then, we obtain the normal vector

N�l��r,ϕ� � 2D1�r� cos ϕ
0
@ − sin 2ϕD2�r�

D0�r� � cos 2ϕD2�r�
0

1
A: (24)

Except for minor contributions from its x component, around
the focus where the irradiance mainly concentrates, this vector
essentially points upward (toward positive y) for x > 0, and
downward for x < 0, indicating that there is basically a single
polarization plane, which coincides with the XZ plane in a
good approximation, and where the field exhibits elliptical
polarization; of course, with a prominent major axis oriented
along the x direction. Along the direction x � 0, however,
the normal vector cancels out; hence, the polarization state cor-
responds to linear horizontal polarization. This behavior is
better seen in Fig. 5(a), where N�l� is shown in the form of a
vector plot, with the arrows representing this vector at
different points of the focal plane being proportional to its
corresponding modulus. To get an idea of the relevance of

the field within the region, the arrow map is displayed superim-
posed to the density plot of the irradiance, which clearly shows
that the relevant region where energy concentrates is on the order
of λ∕2 around the focus. This complies with the information
provided by the local Stokes parameters, which read as

S̃0�r,ϕ� � D2
0�r� � D2

2�r� � 2 cos 2ϕD0�r�D2�r�
� 4 cos2ϕD2

1�r�, (25a)

S̃1�r,ϕ� � D2
0�r� � D2

2�r� � 2 cos 2ϕD0�r�D2�r�
− 4 cos2ϕD2

1�r�, (25b)

S̃2�r,ϕ� � 0, (25c)

S̃3�r,ϕ�

� 4j cos ϕjjD1�r�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

0�r� � D2
2�r� � 2 cos 2ϕD0�r�D2�r�

q
:

(25d)

As it can readily be noticed, now we have a non-negligible
parameter; namely S̃3, which indicates that, to a certain extent,
the field is elliptically polarized. Furthermore, again, except for a
slight variation provoked by the term containing D2

1, the
two first local Stokes parameters, S̃0 and S̃1, are quite similar
in value.

B. Circularly Polarized Input Fields
Let us now consider the case of circular polarization [θ̄ � π∕2
and φ̄ � 	π∕2 in Eq. (15)], where

ûc �
1ffiffiffi
2

p
�

1
γi

�
, (26)

with γ � 	1. The angular spectrum is

E�c�
0 �θ,φ� � g�θ�

2
ffiffiffi
2

p
 

1� cos θ� eγ2iφ�cos θ − 1�
γi�1� cos θ� − γieγ2iφ�cos θ − 1�

−2 sin θeγiφ

!
,

(27)

(a) (b)

Fig. 4. (a) Representation of the Di functions in Eq. (21), in terms of the radial distance r for g�θ� given by Eq. (14). D0 is denoted with a solid
blue line,D1 with the dashed orange line, andD2 with the dash-dotted green line. (b) Representation of theD 0

i functions in Eq. (37), in terms of the
radial distance r, for g�θ� given by Eq. (16). The solid blue line and the dashed orange line denote, respectively, D 0

0 and D 0
1.
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while the field at the focal plane is

E�c��r,ϕ� �
0
@ D0�r� � eγ2iϕD2�r�

γiD0�r� − γieγ2iϕD2�r�
−2ieγiϕD1�r�

1
A: (28)

Again, the field polarization is seemingly highly nonuni-
form, except at the origin (r � 0), where it has the same polari-
zation as the input field. Now, if we proceed as before, and
consider the dependence on r of the auxiliary integrals, as
shown in Fig. 4(a), we notice that this polarization state, except
for minor corrections, extends to the whole focal plane. This is
also seen from the corresponding transverse Stokes parameters

S0�r,ϕ� � 2�D2
0�r� � D2

2�r��, (29a)

S1�r,ϕ� � 4 cos 2ϕD0�r�D2�r�, (29b)

S2�r,ϕ� � 4 sin 2ϕD0�r�D2�r�, (29c)

S3�r,ϕ� � 2γ�D2
0�r� − D2

2�r��, (29d)

where, in a first approximation, we have S3 ≈ γS0, while
S1 ≈ S2 ≈ 0, which corresponds to circular polarization, with
γ determining the handedness, just like in the case of the input

field. Again, however, the question is: what is the role played by
the third (z) component of the field in Eq. (28)?

As before, from the real and imaginary components of the
field in Eq. (28), we get

E�c�
r �r,ϕ� �

0
B@

D0�r� � cos 2ϕD2�r�
sin 2ϕD2�r�
γ2 sin ϕD1�r�

1
CA,

E�c�
i �r,ϕ� �

0
B@

γ sin 2ϕD2�r�
γD0�r� − γ cos 2ϕD2�r�

−2 cos ϕD1�r�

1
CA, (30)

from which the P and Q vectors are determined by

P�c��r,ϕ� � �D0�r� � D2�r��
� cos ϕ
sin ϕ
0

�
, (31)

Q �c��r,ϕ� � �D0�r� − D2�r��

0
BB@

−γ sin ϕ

γ cos ϕ

− 2D1�r�
D0�r�−D2�r�

1
CCA, (32)

with α � γϕ. While P�c� is fully contained within the focal
plane, notice that Q �c� points outward; only at the focus,

(a) (b)

(c) (d)

Fig. 5. Vector plots of the normal direction vector N�X ��r,ϕ� at the focal plane (z � 0) for input fields with different polarization states.
(a) Linear (horizontal) polarization in Eq. (24). (b) Radial polarization in Eq. (40). (c) and (d) Circular right-handed polarization in Eq. (33).
A 3D picture is represented in panel (c), while panel (d) offers a 2D representation with only the transverse components of N�c��r,ϕ�. In panels
(a), (b), and (d) a density plot of the irradiance at the focal plane is also provided to have an idea of the spatial region where the field energy is mainly
concentrated. The color scale, from black to light green, indicates the increasing value of the irradiance. In these calculations, σ � 2 andNA � 0.75,
as in the experiments.
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Q �c� is also fully contained within the focal plane. As for the
normal vector, it is

N�c��r,ϕ� � 2�D0�r� � D2�r��D1�r�

0
B@

− sin ϕ

cos ϕ
γ�D0�r�−D2�r��

2D1�r�

1
CA, (33)

which, in general, will point out of the focal plane toward pos-
itive z for right-handed polarization, and to negative z for left-
handed polarization. A 3D representation of this vector for
right-handed polarization is shown in Fig. 5(c) to illustrate this
behavior. Regarding the transverse components of N�c� that re-
main within the (XY ) focal plane, we note from Eq. (33) that,
in the region of interest (i.e., for r ≲ λ), the corresponding 2D
vectors will be oriented counterclockwise, describing a kind of
left-handed whirlpool, as seen in Fig. 5(d). In this regard, it is
important not to confuse the orientation of the normal vector
with the handedness of the polarization state. Nonetheless, it is
more remarkable that those 3D arrows specify locally (i.e., at
each point on the focal plane) the direction normal to the
planes that contain the polarization state of the field, which
happens to be elliptical, as inferred from the expression of
the local Stokes parameters

S̃0�r,ϕ� � 2�D2
0�r� � 2D2

1�r� � D2
2�r��, (34a)

S̃1�r,ϕ� � 4�D0�r�D2�r� − D2
1�r��, (34b)

S̃2�r,ϕ� � 0, (34c)

S̃3�r,ϕ� � 2jD0�r� � D2�r�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D0�r� − D2�r��2 � 4D2

1�r�
q

:

(34d)

C. Radially Polarized Input Fields
Finally, we considered an input field with radial polarization,

ûr �
�
cos ϕ
sin ϕ

�
, (35)

as an example of a situation where the input polarization state is
not uniform. In this case, the field at the focal plane is

E�r��r,ϕ� �
0
@ i cos ϕD 0

1�r�
i sin ϕD 0

1�r�
−D 0

0�r�

1
A, (36)

with the auxiliary integrals

D 0
0�r� � πA

Z
θ0

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ� sin θJ0�kr sin θ� sin θdθ,

(37a)

D 0
1�r� � πA

Z
θ0

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
g�θ� cos θJ1�kr sin θ� sin θdθ:

(37b)

These integrals are plotted against the radial distance r in
Fig. 4(b) for the same experimental conditions. Unlike previous
auxiliary integrals, now the contribution from both D 0

0 and D 0
1

is analogous within a region of the order of r ≲ λ. Hence, any

approximation must be carefully considered. Nonetheless,
considering the dependence on r for D 0

0 and D 0
1 shown in

Fig. 4(b), we can extract some conclusions regarding the polari-
zation of the field in Eq. (36). In general, we find that it is
elliptically polarized, with a relatively important contribution
in the z direction; that is, out of the focal plane. At some values
for r, for instance, the focus and other values at which D 0

1 can-
cels out (e.g., r ≈ 2.5λ), the field becomes linearly polarized
along the z direction. On the other hand, at those radial dis-
tances where D 0

0 vanishes (e.g., r ≈ 0.6λ or r ≈ 1.7λ), the field
will be radially polarized, like the input field. There also are
other regions where D 0

0 and D 0
1 are both nearly zero (e.g.,

r ≈ 1.2λ); hence, there is no field. All these behaviors, however,
cannot be identified by only inspecting the transverse Stokes
parameters, which are

S0�r,ϕ� � D 02
1 �r�, (38a)

S1�r,ϕ� � cos 2ϕD 02
1 �r�, (38b)

S2�r,ϕ� � sin 2ϕD 02
1 �r�, (38c)

S3�r,ϕ� � 0: (38d)

Instead, the information provided by these parameters only re-
fers to linear polarization (along the radial direction).

Contrary to that situation, we can see that the method in-
troduced here is able to provide full information about the local
polarization state of the field, even if we look at the (transverse)
focal plane. As in the case of linear polarization,

E�r�
r �r,ϕ� � D 0

0�r�

0
B@

0

0

−1

1
CA,

E�r�
i �r,ϕ� � D 0

1�r�

0
B@

cos ϕ

sin ϕ

0

1
CA, (39)

which are the real and imaginary components of the field in
Eq. (36) that can be identified directly with, respectively,
the P and Q vectors. This implies that the planes containing
the vibrating field at each point of the focal plane will be
perpendicular to this latter plane, as indicated by the associated
normal vector

N�r��r,ϕ� � D 0
0�r�D 0

1�r�
� sin ϕ
−cos ϕ

0

�
: (40)

There is an important difference, though, with the linear case:
this normal vector rotates clockwise, while in the situation with
linear polarization it was nearly parallel (in a good approxima-
tion) to the y axis. Of course, whenever D 0

0, D
0
1, or both vanish,

the polarization state will be linear along the z axis, or there
simply will not be polarization because there is no field. In
any other case, the field will display an elliptical polarization,
as also inferred from the expression of the corresponding local
Stokes parameters

S̃0�r,ϕ� � D 02
0 �r� � D 02

1 �r�, (41a)

S̃1�r,ϕ� � D 02
0 �r� − D 02

1 �r�, (41b)
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S̃2�r,ϕ� � 0, (41c)

S̃3�r,ϕ� � 2jD 0
0�r�D 0

1�r�j: (41d)

3. EXPERIMENTAL RESULTS

We checked the validity and reliability of the method by carry-
ing out a series of experimental measures on highly focused
fields prepared from input fields with particular irradiance dis-
tributions and definite polarization states, as described in
Section 2 (Theory). The experimental procedure to produce
these fields is described in Appendix A. From the amplitude
and phase of the field components obtained from experimental
measures at the focal plane, we have inferred the value of both
the usual transverse Stokes parameters, using Eq. (9), and the
local Stokes parameters, using the expressions on the right-hand
side of the second equality in Eq. (8). In all the experiments, the
input beams have been produced with σ � 2 and the focusing
optical systems had NA � 0.75.

A. Linearly Polarized Input Field
The transverse Stokes parameters for an input field linearly po-
larized, with its angular spectrum described by Eq. (19), are
displayed in the upper row in Fig. 6. As it can readily be no-
ticed, they agree with the corresponding theoretical results in
Eq. (22). Both S0 and S1 exhibit the seemingly circular sym-
metry that arises from the fact that D0 is much larger than the
other two contributing integrals, which, in turn, produces
S0 ≈ S1 ≈ D2

0�r�. On the other hand, S2 ≈ 0 because it de-
pends linearly on D2 and hence one expects this parameter

to be nearly zero. Even though some faint structure can still
be perceived, if we consider the scale bar on the right, we notice
that the values are negligible. In the case of S3, its value is not
strictly zero, in compliance with Eq. (22d), but it enters within
the accuracy limits associated with the experiment (sensitivity
to misalignment and errors carried in the inference procedure).
Therefore, according to these experimental data, we can con-
clude that the field is basically linearly polarized on the trans-
verse (focal) plane, with the same direction as the incident field;
that is, horizontal.

If we now consider the local Stokes parameters, shown in the
middle row of Fig. 6 (S̃2 is not represented, because it is strictly
zero by definition), we find that they effectively provide us with
more information. In compliance with Eq. (25), first, we notice
that both S̃0 and S̃1 also display a nearly circular symmetry
due to the importance of the integral D0 and, accordingly,
S̃0 ≈ S̃1 ≈ D2

0�r�. Second, not only S̃3 is nonzero, but its value
is relevant compared to the values of S̃0 and S̃1 (see the color
bar on the right-hand side in Fig. 6), which denotes that there is
an important contribution to the polarization going out of the
plane across some regions of the focal plane. In particular, this
non-homogeneity in the polarization state is described, in a
good approximation, by the relation S̃3 ≈ 4j cos ϕD1�r�D0�r�j.
In those cases where S̃3 is not zero, the polarization state is
elliptical; otherwise, it will be linear and contained within
the focal plane. Third, there is an excellent agreement with
the theoretical values, as seen when we compare it to the panels
of the bottom row of Fig. 6. It should be clarified, in this regard,
that the fact that the rings in the numerical values are much
fainter than in the experimental counterparts is related to
the detection process, in which low intensity regions are often
overestimated.

B. Circularly Polarized Input Field
The transverse Stokes parameters for an input field with right-
handed polarization, with its angular spectrum being described
by Eq. (27), are represented in the upper row in Fig. 7. Again,
we find a good agreement with the corresponding theoretical
results in Eq. (29), where now both S0 and S3 exhibit a nearly
circular symmetry because their value is, except for minor de-
viations, close to D2

0�r�, while both S1 and S2 are nearly zero
due to their linear dependence on D2�r�. Of course, they are
not totally zero because of the small but finite value ofD2�r�, as
seen in the color bar on the right-hand side of Fig. 7. Therefore,
these experimental data show that the polarization state, within
the transverse (focal) plane is basically circular with right hand-
edness, except for minimal, second- or third-order deviations.
In this regard, the polarization state is pretty close to that of the
input field.

In the case of the local Stokes parameters, as shown in the
middle row in Fig. 7, we find an analogous behavior, with
S̃0 ≈ S̃3 ≈ 2D2

0�r� and S̃1 ≈ 0 in a good approximation, in
compliance with Eq. (34). Of course, there are also some minor
corrections that must be considered, but we essentially observe
that, again, there is a good correspondence with the theoretical
expectation. Note, however, that S̃1 is not exactly zero,
although its value all over the region is rather low. We can then
conclude that, as it happens with the corresponding transverse
Stokes parameters, the polarization state is circular, although we

Fig. 6. Experimental value obtained for the transverse Stokes
parameters (top row) and local Stokes parameters (middle row) at
the focal plane for a linearly polarized input field, with horizontal
polarization. The local Stokes parameters obtained numerically are
shown in the bottom row of the figure for comparison. The color code
on the right-hand side applies to all the panels. The input beam has
been produced with σ � 2 and the focusing optical system has
NA � 0.75.
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can say nothing about the handedness, because S̃3 is always a
positive quantity. However, it is here where we find a major
difference with respect to the usual transverse Stokes parame-
ters, as already mentioned in Section 2 (Theory): this polari-
zation state is, with respect to a locally defined normal
direction vector that, for circular polarization, goes out of
the focal plane, as specified by Eq. (33). It is the direction
of its z component, forward or backward (with respect to
the focal plane), what specifies the handedness of the polariza-
tion state because this component is proportional to the hand-
edness factor γ. It therefore shows that the method requires
both the local Stokes parameters and the normal vector.
Both elements provide us with full 3D information about
the polarization state of the field at a given point (i.e., locally),
even if, as in a case like this, we are confined within a 2D plane.

C. Radially Polarized Input Field
Finally, the experimental data for a radially polarized input field
are shown in Fig. 8. The transverse Stokes parameters are
shown in the top row. We observe an excellent agreement be-
tween the experimental values and the theoretical ones, ac-
counted for by Eq. (38), particularly in the case of S0, S1,
and S2, with all of them displaying the symmetries described
by the corresponding analytical expressions. In the case of S3
we find some discrepancies, which should vanish, according to
Eq. (38d). This is only a spurious artifact due to misalignment
and errors carried along its inference from the raw experimental
data. So, all in all, these values show that the field, on the focal
plane, is also radially polarized, like the input field.

The picture rendered by the local Stokes parameters,
though, is a bit different: it captures the fact that the field

has also a polarization component perpendicular to the focal
plane. The middle row in Fig. 8 shows the local Stokes param-
eters for this case. The results agree very nicely with the theo-
retical expectations, described by Eq. (41), where both D 0

0�r�
and D 0

1�r� have a major contribution, unlike the integrals in-
volved in the linearly or circularly polarized states, where D0�r�
has the leading role. More importantly, unlike the transverse
Stokes parameters, which depend linearly only on D 0

1�r�, in
the local counterparts the two integrals make an important con-
tribution. By inspecting the result obtained with both S̃1 and
S̃3 being relevant, we conclude that the polarization state will,
in general, be elliptical instead of radial. This is a rather
counterintuitive result, which might lead us to ask why there
is no radial polarization in a case where the input field is spa-
tially characterized by a non-homogeneous polarization state.
The answer is simple and has to do with the fact, as mentioned
in Section 2 (Theory), that within this 3D picture, the input
radial polarization has become an elliptical polarization within a
plane perpendicular to the observation (focal) one, where the
radial direction now determines one of the semiaxes of the cor-
responding polarization ellipse (the other axis will be parallel to
the z axis). Note that the plane containing the polarization el-
lipse is now given by the normal vector in Eq. (41), which ro-
tates clockwise with the azimuthal angle ϕ.

4. DISCUSSION

Motivated by the need to find a relatively simple but physically
insightful method to specify the polarization state at a local level
of 3D fields, particularly in the case of highly focused fields due
to the relevance of the longitudinal component, we introduced
a set of so-called local Stokes parameters. Unlike the usual

Fig. 7. Experimental value obtained for the transverse Stokes
parameters (top row) and local Stokes parameters (middle row) at
the focal plane for a circularly polarized input field, with right-handed
polarization (γ � �1). The local Stokes parameters obtained numeri-
cally are shown in the bottom row of the figure for comparison. The
color code on the right-hand side applies to all the panels. The input
beam has been produced with σ � 2 and the focusing optical system
has NA � 0.75.

Fig. 8. Experimental value obtained for the transverse Stokes
parameters (top row) and local Stokes parameters (middle row) at
the focal plane for a radially polarized input field. The local Stokes
parameters obtained numerically are shown in the bottom row of
the figure for comparison. The color code on the right-hand side ap-
plies to all the panels. The input beam has been produced with σ � 2
and the focusing optical system has NA � 0.75.
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transverse Stokes parameters, computed on the plane
perpendicular to the longitudinal field direction, the local ones
are referred locally to the normal, to a plane determined by a
basis set that contains the real and imaginary parts of the an-
alyzed electric field; formally, the Argand–Gauss plane defined
by the directions denoted by those two components. This al-
lowed us to keep track of the 3D nature of the field because all
the three field components are involved in the calculation of
these parameters, unlike the usual transverse Stokes parameters,
where the information provided by one of the field components
is lost. In other words, although the transverse Stokes param-
eters do not discriminate information concerning the field z
component when they are computed within a given (transverse)
plane, the local Stokes parameters always contain information
about all components at each point on that plane. This infor-
mation is supplemented by the normal vector that determines
the orientation of the plane the local Stokes parameters are re-
ferred to. Indeed, although any trace on the field helicity dis-
appears from these Stokes parameters, it appears encoded in the
directionality of the normal vector.

To further investigate the usefulness and potential reach of
the newly defined local Stokes parameters, a series of bench-
mark experiments were carried out that compared the informa-
tion provided by transverse and local Stokes parameters side-by-
side. This was done for highly focused fields, obtained from
input fields with three different polarization states: linear
polarization, circular polarization, and radial polarization.
Although the polarization state is relatively nonuniform, the
high-focusing experimental conditions considered render inter-
esting conclusions. For instance, note that while the field
should be considered as linearly polarized across the focal plane
according to the usual transverse Stokes parameters, there is a
certain ellipticity in planes that perpendicularly cross the focal
plane, as it is inferred from the corresponding local Stokes
parameters. On the other hand, in the case of circular polari-
zation, although both types of parameters provide a seemingly
identical conclusion (namely, that the field is also circularly po-
larized at the focal plane), we noticed that the circular polari-
zation described by the local Stokes parameters is referred to
planes that intersect the focal plane and rotate according to
the helicity of the input field. We also explored the situation
with a radially polarized input field as an example of a non-
homogeneously polarized field, finding that the resulting field
is elliptically polarized in planes perpendicular to the focal one
and rotating around the focus. Notice in all these cases the re-
markable influence of the local value of the field z component,
which determined the reference oscillation plane, information
that is totally missed in the case of the transverse Stokes
parameters.

Last, but not least, we would like to stress the fact that, to
some extent, some physical meaning has been associated with
both the real and the imaginary components of the analyzed
field, although typically only the real part is considered.
Although this already goes far beyond the scope of the current
work, it is still noteworthy that analogous analyses have recently
be published that stress the relevance of the complex nature of
optical fields from a physical point of view [46]; i.e., putting the
complex nature of these fields at a level beyond the widespread
use as a bare mathematical artifact.

APPENDIX A: MATERIALS AND METHODS

1. Experimental Setup
The fields considered here have been experimentally generated
using an optical setup suitable to produce highly focused fields,
as shown in Fig. 9. In brief, a fiber-coupled laser (LP520-SF15
at 520 nm, Thorlabs) is collimated by means of an L1 lens.
This field illuminates a translucent twisted-nematic liquid crys-
tal device (TN-LCD) (HEO 0017, Holoeye Photonics) able to
modulate both the amplitude and the phase of the wavefront.
Polarizer LP1 and quarter-wave plate QWP1 configure the
LCD in such a way that a phase-mostly configuration is ful-
filled. The information required to produce a specific field is
encoded on the LCD using the double-pixel hologram ap-
proach [47]. Then, the modulated wavefront passes through
polarizer LP2, and, depending on the problem considered,
an extra polarizing element should be included: a quarter-wave
plate QWP2 is used for circularly or elliptically polarized light
whereas a vortex retarder (VR) is used to produce radial, azi-
muthal, or spiral polarization. The LCD is imaged on the en-
trance pupil of microscope objective MO1 (N40X-PF Nikon
Plan Fluorite with NA1 � 0.75) by means of relay lenses L2
and L3. A spatial filter (SF), placed in the back focal plane of
L2, removes diffracted terms generated by the hologram.

The microscope objective MO2, which is identical to MO1,
images the light distribution produced by MO1 on a CCD
camera (Stingray with a 14-bit depth and a pixel pitch of
3.75 μm). The position of the camera is controlled by a mo-
torized tool (LTA-HL, Newport) with a unidirectional repeat-
ability of	100 nm. Finally, a quarter-wave plate QWP3 and a
polarizer LP3 are used to record the polarimetric images nec-
essary to generate the Stokes parameters.

We have experimentally investigated the polarization state at
the focal plane resulting from three input fields with well-
defined (input) polarization states: namely, linear, circular,
and radial polarization. In the three cases, we chose the value
σ � 2 for the parameter ruling the width of the transverse field
distribution [see Eqs. (14) and (16)] and a numerical aperture

Fig. 9. Experimental setup (see the main text for details). To produce a linearly polarized input field, QWP2 is removed, while it is replaced by the
VR if radially, azimuthally, or spirally polarized input fields are required.
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NA � 0.75. Furthermore, for comparison, in all cases we rep-
resented both the usual transverse Stokes parameters and the
newly defined local Stokes ones. Regarding the latter case, both
the values inferred from experimental measures and their cor-
responding numerical estimates have been plotted, as shown by
Figs. 6–8.

2. Experimental Data Processing
The experimental setup shown in Fig. 9 makes it possible to
obtain irradiance images of the transverse field around the focal
zone. However, the three complex amplitudes of the electric
field �Ex , Ey, Ez� should be known in advance to determine
the local Stokes distributions. In this section, we describe a
method to retrieve the total field using the transverse compo-
nents. This technique is fully described in Ref. [43] and consists
of several steps that are illustrated in Fig. 10 and detailed below.
The determination of the three components of the field is car-
ried out without interacting with any medium. Our approach
provides a fair estimation of the current longitudinal compo-
nent by just manipulating the transverse one. Interestingly,
it does not require the use of more complex techniques such
as knife-edge scanning or near-field optical microscopy
[25,48]. Here are the steps.

• Experimental polarimetric images. In the first step, we
record the polarimetric information associated with the trans-
verse components of the field in two different planes (front and
back) around the focus, using a CCD camera. The positions of
both the front plane (zF ) and the back plane (zB) are separated
at a distance equal to 2 μm. Even though the knowledge of the
exact position of the focal plane z � 0 is not required, the fol-
lowing conditions should hold: zB < 0 and zF > 0. We record
the six polarimetric images (IF0 , I

F
45, I

F
90, I

F
135, I

F
R , and I

F
L ) using

linear polarizer LP3 and quarter-wave plate QWP3. Then, the
experimental phase shift δ between the x and y components of
the front plane is calculated using SF2 and SF3 .

• Transverse phase retrieval. The phase of the x and y
components is recovered independently using Fienup’s iterative
method [49]. This phase retrieval algorithm is based on

computationally propagating the experimental field moduli be-
tween the back and front planes, with a random phase initial-
ization. Forward and backward free space propagations are
performed between the back and front planes. At each step, the
computed amplitude is replaced with the experimental one.
Once the mean squared error between the experimental and
computationally retrieved moduli reaches a prescribed value,
or the algorithm has iterated a certain number of times, the
phases of each electromagnetic field component are considered
to be estimated. An acceleration method is used to improve the
convergence rate as well as to avoid local minima in the process.

• Set the phase shift. Note that the retrieved phase is ref-
erenced to an arbitrary initial phase value, which is different for
both the x and y components: it depends solely on the random
initialization of the algorithm and does not separately affect the
propagation of each component. Nevertheless, the phase shift
at each point is related to the particular polarization state of
the field.

The arbitrary initial phase is determined in this way: for each
polarization component, we select the phase of the point with
the highest transverse irradiance of the field (r0) and then glob-
ally subtract this phase value from all the points of the corre-
sponding phase distribution. In this way, the phase at r0 is zero
for both components. Finally, we globally add the experimental
phase shift δ�r0� to the y polarization component.

• Estimation of the position of the focal plane. Once the
complex transverse electromagnetic field at a certain plane is
known, it can be propagated to any other using the Fresnel
diffraction formula. To estimate the position of the focal plane,
we scanned the transverse irradiance between the back and
front planes. Then, the plane with a maximum density irradi-
ance contains the focal point.

• Longitudinal component retrieval. To retrieve the
longitudinal component of the field, we take advantage of
Gauss’ law, which in the present context reduces to

∇ · E�r� � 0. (A1)

After some algebraic manipulations, which include recasting
the transverse field in terms of its angular spectrum at the focal

Fig. 10. Experimental data management pipeline. See the main text for a detailed explanation of each processing block. FFSP, forward free space
propagation; BFSP, backward free space propagation; h�·�, the convolution kernel of the Fresnel diffraction; and �, the convolution product.
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plane and then integrating it over the z coordinate, we
finally get

Ez�r� � −
1

4π2

Z
k2⊥≤k

2

k⊥ · Ê⊥�k⊥, z � 0�
kz

eikz z eik⊥·rdk⊥,

(A2)

where k⊥ � �kx , ky� and kz is the transverse and longitudinal
wave vectors, respectively, satisfying k2 � k2⊥ � k2z . Ê⊥ is the
plane wave spectrum of the transverse component. Once both
the amplitude and phase of the three components of the field
are obtained, the local Stokes images can be directly computed
by Eq. (9).
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