• Journal of Semiconductors
  • Vol. 40, Issue 1, 011803 (2019)
Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, and Yue Hao
Author Affiliations
  • Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1088/1674-4926/40/1/011803 Cite this Article
    Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices[J]. Journal of Semiconductors, 2019, 40(1): 011803 Copy Citation Text show less
    References

    [1] Y Zhang, i C Joishi, Z Xia et al. Demonstration of β-(AlxGa1–x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett, 112, 233503(2018).

    [2] Y Lv, X Zhou, S Long et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Device Lett, 39, 1(2019).

    [3] A J Green, K Chabak, E R Heller et al. 3.8 MV/cm breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 37, 902(2016).

    [4] K D Chabak, N Moser, A J Green et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 109, 213501(2016).

    [5] M Tadjer, N Mahadik, V D Wheeler et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 5, 468(2016).

    [6] K Zeng, J S Wallace, C Heimburger et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 38, 513(2017).

    [7] C J H Wort, R S Balmer. Diamond as an electronic material. Mater Today, 11, 22(2008).

    [8] H Fu, I Baranowski, X Huang et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 38, 1286(2017).

    [9] B J Baliga. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 10, 455(1989).

    [10] H V Wenckstern. Group-III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 3, 1600350(2017).

    [11] S Yoshioka, H Hayashi, A Kuwabara et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 19, 346211(2007).

    [12] H He, R Orlando, M A Blanco et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 74, 195123(2006).

    [13] H He, M A Blanco, R Pandey. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 88, 261904(2006).

    [14] P Kroll, R Dronskowski, M Martin. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 15, 3296(2005).

    [15] H Y Playford, A C Hannon, E R Barney et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Eur J, 19, 2803(2013).

    [16] H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 252, 828(2015).

    [17] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 97, 142106(2010).

    [18] V I Vasyltsiv, Y I Rym, Y M Zakharo. Optical absorption and photoconductivity at the band edge of β-Ga2−xInxO3. Phys Status Solidi B, 195, 653(1996).

    [19] Z Galazka, K Irmscher, R Uecker et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 404, 184(2014).

    [20] Z Galazka, R Uecker, K Irmscher et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 45, 1229(2010).

    [21] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 55, 1202A2(2016).

    [22] E G Vıllora, Y Morioka, T Atou. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys Status Solidi A, 193, 187(2002).

    [23] J Zhang, B Li, C Xia. Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 67, 2448(2006).

    [24] N Suzuki, S Ohira, M Tanaka. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 4, 2310(2007).

    [25] M Mohamed, K Irmscher, C Janowitz et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 101, 132106(2012).

    [26] K Suzuki, T Okamoto, M Takata. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 30, 1679(2004).

    [27] J Zhang, C Xia, Q Deng et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 67, 1656(2006).

    [28] Y Tomm, P Reiche, D Klimm et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 220, 510(2000).

    [29] Z Galazka, R Uecker, D Klimm et al. Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method. ECS J Solid State Sci Technol, 6, Q3007(2017).

    [30] M Higashiwaki, A Kuramata, H Murakami et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 50, 333002(2017).

    [31] K Hoshikawa, E Ohba, E Kobayashi et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 447, 36(2016).

    [32] F Alema, B Hertog, A Osinsky et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 475, 77(2017).

    [33] D Gogova, G Wagner, M Baldini et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 401, 665(2014).

    [34] M Baldini, M Albrecht, A Fiedler et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 51, 3650(2016).

    [35] K Sasaki, M Higashiwaki, A Kuramata et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 392, 30(2014).

    [36] T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 46, 7217(2007).

    [37] H Okumura, M Kita, K Sasaki et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 7, 095501(2014).

    [38] T Oshima, N Arai, N Suzuki et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 516, 5768(2008).

    [39] Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 8, 055501(2015).

    [40] T Watahiki, Y Yuda, A Furukawa et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 111, 222104(2017).

    [41] H Murakami, K Nomura, K Goto et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 8, 015503(2015).

    [42] K Nomura, K Goto, i R Togashi et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 405, 19(2014).

    [43] C Hebert, A Petitmangin, J Perrie're et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 133, 135(2012).

    [44] Z Chen, X Wang, S Noda et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 90, 207(2016).

    [45] T Kawaharamura. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 53, 05F(2014).

    [46] S D Lee, K Kaneko, S Fujita. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 55, 1202B(2016).

    [47] G T Dang, T Kawaharamura, M Furuta et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 36, 463(2015).

    [48] S Fujita, K Kaneko. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 401, 588(2014).

    [49] K Akaiwa, S Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 51, 070203(2012).

    [50] M Baldini, M Albrecht, D Gogova et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 30, 024013(2015).

    [51] Z Hu, H Zhou, Q Feng. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 39, 1564(2018).

    [52] K Sasaki, A Kuramata, T Masui et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 5, 035502(2012).

    [53] K Konishi, K Goto, H Murakami et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [54] J Yang, S Ahn, F Ren et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 110, 192101(2017).

    [55] J Yang, S Ahn, F Ren et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 38, 906(2017).

    [56] J Yang, F Ren, S J Pearton et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 65, 2790(2018).

    [57] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [58] M H Wong, K Sasaki, A Kuramata et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 37, 212(2016).

    [59] K Zeng, A Vaidya, U Singisetti et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 1385(2018).

    [60]

    [61] Z Hu, K Nomoto, W Li et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 39, 869(2018).

    [62] A J Green, K D Chabak, M Baldini et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 38, 790(2017).

    [63] M Singh, M A Casbon, M J Uren et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 1572(2018).

    [64]

    [65] W S Hwang, A Verma, H Peelaers et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 104, 203111(2014).

    [66] Z Hu, H Zhou, K Dang et al. lateral-Ga2O3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 6, 815(2018).

    [67] H Zhou, K Maize, G Qiu et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 111, 092102(2017).

    [68] H Zhou, M Si, S Alghamdi et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 38, 103(2017).

    [69] N A Moser, J P Mccandless, A Crespo et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 110, 143505(2017).

    [70] S H Shin, M A Wahab, A Masuduzzaman et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 62, 3516(2014).

    [71] H Zhou, K Maize, J Noh et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2, 7723(2017).

    [72] J Noh, M Si, H Zhou et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 1(2018).

    [73] K Maize, A Zibari, W D French et al. Thermoreflectance CCD imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices, 61, 3047(2014).

    [74] M Si, L Yang, H Zhou et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2, 7136(2017).

    Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices[J]. Journal of Semiconductors, 2019, 40(1): 011803
    Download Citation