• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1913002 (2022)
Qiang Huang1、2, Yi Zhang1, Peilin Jiang1, Changliang Yu3, Haotian Shi1, Chukun Huang1, and Junqiang Sun1、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Hunan Province Key Laboratory of Grids Operation and Control on Multi-Power Sources Area, School of Electrical Engineering, Shaoyang University, Shaoyang 422000, Hunan, China
  • 3Wuhan Fisilink Microelectronics Technology Co., Ltd., Wuhan 430040, Hubei, China
  • show less
    DOI: 10.3788/LOP202259.1913002 Cite this Article Set citation alerts
    Qiang Huang, Yi Zhang, Peilin Jiang, Changliang Yu, Haotian Shi, Chukun Huang, Junqiang Sun. Research on High-Efficiency Coupling Gratings Applied to Silicon Germanium Materials[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1913002 Copy Citation Text show less
    References

    [1] Tian M, Qu M N, Wu L Y et al. Progress on asymmetrical grating couplers for vertical coupling[J]. Laser & Optoelectronics Progress, 58, 0500004(2021).

    [2] Ramirez J M, Vakarin V, Gilles C et al. Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics[J]. Optics Letters, 42, 105-108(2017).

    [3] Taillaert D, Chong H, Borel P I et al. A compact two-dimensional grating coupler used as a polarization splitter[J]. IEEE Photonics Technology Letters, 15, 1249-1251(2003).

    [4] Wang Z C, Tang Y B, Wosinski L et al. Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath[J]. IEEE Photonics Technology Letters, 22, 1568-1570(2010).

    [5] Liu M, Zheng X, Liu W F et al. Design of vertical grating coupler based on sub-wavelength line gratings[J]. Laser & Optoelectronics Progress, 58, 1705002(2021).

    [6] Zhu G F, Dai Z R, Ju X W et al. On-chip terahertz demultiplexer and grating coupler based on reverse design[J]. Acta Optica Sinica, 42, 0913001(2022).

    [7] Roelkens G, van Thourhout D, Baets R. High efficiency Silicon-on-insulator grating coupler based on a poly-Silicon overlay[J]. Optics Express, 14, 11622-11630(2006).

    [8] Li C, Zhang H J, Yu M B et al. CMOS-compatible high efficiency double-etched apodized waveguide grating coupler[J]. Optics Express, 21, 7868-7874(2013).

    [9] Halir R, Cheben P, Schmid J H et al. Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure[J]. Optics Letters, 35, 3243-3245(2010).

    [10] Alonso-Ramos C, Cheben P, Ortega-Moñux A et al. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95[J]. Optics Letters, 39, 5351-5354(2014).

    [11] Nedeljkovic M, Penadés J S, Mitchell C J et al. Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers[J]. IEEE Photonics Technology Letters, 27, 1040-1043(2015).

    [12] Kang J, Cheng Z Z, Zhou W et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides[J]. Optics Letters, 42, 2094-2097(2017).

    [13] Radosavljevic S, Kuyken B, Roelkens G. Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform[J]. Optics Express, 25, 19034-19042(2017).

    [14] Gao J F, Zhou H, Jiang J L et al. Design of low bias voltage Ge/SiGe multiple quantum wells electro-absorption modulator at 1550 nm[J]. AIP Advances, 7, 035317(2017).

    [15] Gao J F, Sun J Q, Jiang J L et al. Design and analysis of electro-absorption modulators with uniaxially stressed Ge/SiGe multiple quantum wells[J]. Optics Express, 25, 10874-10884(2017).

    [16] Gao J F, Sun J Q, Jiang J L. Demonstration of biaxially tensile-strained Ge/SiGe multiple quantum well (MQW) electroabsorption modulators with low polarization dependence[J]. Nanophotonics, 9, 4355-4363(2020).

    [17] Zhang Y, Sun J Q, Gao J F. Theoretical analysis of electro-refractive index variation in asymmetric Ge/SiGe coupled quantum wells[J]. Optics Express, 25, 30032-30042(2017).

    [18] Zhang Y, Gao J F, Qin S B et al. Asymmetric Ge/SiGe coupled quantum well modulators[J]. Nanophotonics, 10, 1765-1773(2021).

    [19] Zaoui W S, Rosa M F, Vogel W et al. Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency[J]. Optics Express, 20, B238-B243(2012).

    [20] Benedikovic D, Cheben P, Schmid J. High-efficiency single etch step apodized surface grating coupler using subwavelength structure[J]. Laser & Photonics Reviews, 8, L93-L97(2014).

    [21] Xu D X, Schmid J H, Reed G T et al. Silicon photonic integration platform: have we found the sweet spot?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 189-205(2014).

    [22] Erko A, Zizak I. Hard X-ray micro-spectroscopy at Berliner elektronenspeicherring für synchrotronstrahlung II[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 833-848(2009).

    Qiang Huang, Yi Zhang, Peilin Jiang, Changliang Yu, Haotian Shi, Chukun Huang, Junqiang Sun. Research on High-Efficiency Coupling Gratings Applied to Silicon Germanium Materials[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1913002
    Download Citation