• Advanced Photonics
  • Vol. 5, Issue 3, 036004 (2023)
Jue Wang1、2、†, Chengkun Cai1、2, Feng Cui1、2, Min Yang1、2, Yize Liang1、2, and Jian Wang1、2、*
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.5.3.036004 Cite this Article Set citation alerts
    Jue Wang, Chengkun Cai, Feng Cui, Min Yang, Yize Liang, Jian Wang. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects[J]. Advanced Photonics, 2023, 5(3): 036004 Copy Citation Text show less
    References

    [1] D. M. Spirit, A. D. Ellis, P. E. Barnsley. Optical time division multiplexing: systems and networks. IEEE Commun. Mag., 32, 56-62(1994).

    [2] M. A. Khalighi, H. Akhouayri, S. Hranilovic. Silicon-photomultiplier-based underwater wireless optical communication using pulse-amplitude modulation. IEEE J. Ocean Eng., 45, 1611-1621(2020).

    [3] L. Tao et al. Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems. Opt. Express, 21, 6459-6465(2013).

    [4] X.-H. Huang et al. WDM free-space optical communication system of high-speed hybrid signals. IEEE Photonics J., 10, 7204207(2018).

    [5] P. Chvojka et al. Visible light communications: increasing data rates with polarization division multiplexing. Opt. Lett., 45, 2977-2980(2020).

    [6] D. J. Richardson. Filling the light pipe. Science, 330, 327-328(2010).

    [7] Y. Weng, X. He, Z. Pan. Space division multiplexing optical communication using few-mode fibers. Opt. Fiber Technol., 36, 155-180(2017).

    [8] T. Mizuno, Y. Miyamoto. High-capacity dense space division multiplexing transmission. Opt. Fiber Technol., 35, 108-117(2017).

    [9] A. Trichili et al. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun. Surv. Tutor., 21, 3175-3203(2019).

    [10] G. Labroille et al. Mode selective 10-mode multiplexer based on multi-plane light conversion, Th3E.5(2016).

    [11] S. Bade et al. Fabrication and characterization of a mode-selective 45-mode spatial multiplexer based on multi-plane light conversion, Th4B.3(2018).

    [12] C. Koebele et al. Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Opt. Express, 19, 16593-16600(2011).

    [13] E. Otte, K. Tekce, C. Denz. Spatial multiplexing for tailored fully-structured light. J. Opt., 20, 105606(2018).

    [14] G. Kurczveil et al. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels, 1-2(2018).

    [15] Q. Bao et al. On-chip single-mode CdS nanowire laser. Light Sci. Appl., 9, 42(2020).

    [16] K. Shtyrkova et al. Integrated CMOS-compatible Q-switched mode-locked lasers at 1900 nm with an on-chip artificial saturable absorber. Opt. Express, 27, 3542-3556(2019).

    [17] K. P. Nagarjun et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt. Express, 26, 10744-10753(2018).

    [18] A. Samani et al. Silicon photonic Mach–Zehnder modulator architectures for on chip PAM-4 signal generation. J. Light Technol., 37, 2989-2999(2019).

    [19] Y. Zhang et al. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Res., 5, 521-526(2017).

    [20] L. Yang et al. General architectures for on-chip optical space and mode switching. Optica, 5, 180-187(2018).

    [21] X. Nie et al. High extinction ratio on-chip pump-rejection filter based on cascaded grating-assisted contra-directional couplers in silicon nitride rib waveguides. Opt. Lett., 44, 2310-2313(2019).

    [22] W. Zhang, J. Yao. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett., 43, 3622-3625(2018).

    [23] H. D. T. Linh et al. Arbitrary TE0/TE1/TE2/TE3 mode converter using 1 × 4 Y-junction and 4 × 4 MMI couplers. IEEE J. Sel. Top Quantum Electron., 26, 8300708(2020).

    [24] Y. Meng et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res., 8, 564-576(2020).

    [25] X. Yu et al. Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration. Appl. Phys. Lett., 107, 031102(2015).

    [26] N. Nishiyama et al. Si-photonics-based layer-to-layer coupler toward 3D optical interconnection. IEICE Trans. Electron., E101.C, 501-508(2018).

    [27] M. Pospiech et al. Single-sweep laser writing of 3D-waveguide devices. Opt. Express, 18, 6994-7001(2010).

    [28] S. Gross et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers: three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev., 8, L81-L85(2014).

    [29] R. R. Thomson et al. Ultrafast laser inscription of an integrated photonic lantern. Opt. Express, 19, 5698-5705(2011).

    [30] H. Chen et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology. J. Light Technol., 33, 1147-1154(2015).

    [31] G. Douglass et al. Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns. Opt. Express, 26, 1497-1505(2018).

    [32] B. Guan et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express, 22, 145-156(2014).

    [33] P. Mitchell et al. 57 channel (19×3) spatial multiplexer fabricated using direct laser inscription, M3K.5(2014).

    [34] R. G. H. van Uden et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [35] S. Gross et al. Ultrafast laser-written sub-components for space division multiplexing, W1A.1(2020).

    [36] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455-474(2013).

    [37] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [38] L. Zhu, J. Wang. A review of multiple optical vortices generation: methods and applications. Front. Optoelectron., 12, 52-68(2019).

    [39] X. Wang et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [40] R. Chen et al. Orbital angular momentum waves: generation, detection and emerging applications. IEEE Commun. Surv. Tutor., 22, 840-868(2020).

    [41] A. M. Velázquez-Benítez et al. Scaling photonic lanterns for space-division multiplexing. Sci. Rep., 8, 8897(2018).

    [42] E. Mazur. Femtosecond laser micromachining in transparent materials, BWB4(2010).

    [43] M. Ams et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 13, 5676-5681(2005).

    [44] Y. Cheng et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett., 28, 55-57(2003).

    [45] N. T. Shaked et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing. Adv. Opt. Photonics, 12, 556-611(2020).

    [46] M. Mazur et al. Characterization of long multi-mode fiber links using digital holography, W4C.5(2019).

    [47] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2001).

    Jue Wang, Chengkun Cai, Feng Cui, Min Yang, Yize Liang, Jian Wang. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects[J]. Advanced Photonics, 2023, 5(3): 036004
    Download Citation