• Photonics Research
  • Vol. 10, Issue 4, 980 (2022)
Hongbin Ma1、2、3, Dongdong Li1、2、3, Nanxuan Wu1、2、3, Yiyun Zhang1、2、3, Hongsheng Chen1、2、3、4、*, and Haoliang Qian1、2、3、5、*
Author Affiliations
  • 1Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 2ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou 310027, China
  • 3International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining 314400, China
  • 4e-mail: hansomchen@zju.edu.cn
  • 5e-mail: haoliangqian@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.450747 Cite this Article Set citation alerts
    Hongbin Ma, Dongdong Li, Nanxuan Wu, Yiyun Zhang, Hongsheng Chen, Haoliang Qian. Nonlinear all-optical modulator based on non-Hermitian PT symmetry[J]. Photonics Research, 2022, 10(4): 980 Copy Citation Text show less
    References

    [1] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [2] P. Minzioni, C. Lacava, T. Tanabe, J. Dong, X. Hu, G. Csaba, W. Porod, G. Singh, A. E. Willner, A. Almaiman. Roadmap on all-optical processing. J. Opt., 21, 063001(2019).

    [3] D. A. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).

    [4] T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, S. Matsuo. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics, 11, 482-485(2017).

    [5] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [6] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [7] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [8] X. Guo, R. Liu, D. Hu, H. Hu, Z. Wei, R. Wang, Y. Dai, Y. Cheng, K. Chen, K. Liu. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater., 32, 1907105(2020).

    [9] M. Klein, B. H. Badada, R. Binder, A. Alfrey, M. McKie, M. R. Koehler, D. G. Mandrus, T. Taniguchi, K. Watanabe, B. J. LeRoy. 2D semiconductor nonlinear plasmonic modulators. Nat. Commun., 10, 3264(2019).

    [10] O. Reshef, I. De Leon, M. Z. Alam, R. W. Boyd. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater., 4, 535-551(2019).

    [11] R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R. T. Chen, H. Dalir, V. J. Sorger. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, 7, 333-335(2020).

    [12] M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, G. A. Keeler. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5, 233-236(2018).

    [13] X. Liu, K. Zang, J.-H. Kang, J. Park, J. S. Harris, P. G. Kik, M. L. Brongersma. Epsilon-near-zero Si slot-waveguide modulator. ACS Photon., 5, 4484-4490(2018).

    [14] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [15] M.-A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [16] T. Kato. Perturbation Theory for Linear Operators, 132(2013).

    [17] Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, Y.-X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 117, 110802(2016).

    [18] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [19] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [20] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65-69(2019).

    [21] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [22] L. Shao, W. Mao, S. Maity, N. Sinclair, Y. Hu, L. Yang, M. Lončar. Non-reciprocal transmission of microwave acoustic waves in nonlinear parity–time symmetric resonators. Nat. Electron., 3, 267-272(2020).

    [23] H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [24] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [25] Z. Li, G. Cao, C. Li, S. Dong, Y. Deng, X. Liu, J. S. Ho, C.-W. Qiu. Non-Hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res., 171, 1-20(2021).

    [26] K. G. Makris, R. El-Ganainy, D. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [27] S. Longhi. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett., 103, 123601(2009).

    [28] Y. Yan, N. C. Giebink. Passive PT symmetry in organic composite films via complex refractive index modulation. Adv. Opt. Mater., 2, 423-427(2014).

    [29] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [30] H. Zhao, W. S. Fegadolli, J. Yu, Z. Zhang, L. Ge, A. Scherer, L. Feng. Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett., 117, 193901(2016).

    [31] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity–time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [32] S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, Y. S. Kivshar. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photon. Rev., 10, 177-213(2016).

    [33] M. Kulishov, J. M. Laniel, N. Bélanger, D. V. Plant. Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission. Opt. Express, 13, 3567-3578(2005).

    [34] Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [35] W.-P. Huang. Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A, 11, 963-983(1994).

    [36] A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, D. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [37] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [38] P. Johnson, R. Christy. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B, 9, 5056-5070(1974).

    [39] A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 37, 5271-5283(1998).

    [40] M. Z. Alam, I. De Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [41] J. H. Ni, W. L. Sarney, A. C. Leff, J. P. Cahill, W. Zhou. Property variation in wavelength-thick epsilon-near-zero ITO metafilm for near IR photonic devices. Sci. Rep., 10, 713(2020).

    [42] R. W. Boyd. Nonlinear Optics(2020).

    [43] L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3, 247-268(2014).

    [44] K. S. Rao, R. A. Ganeev, K. Zhang, Y. Fu, G. S. Boltaev, P. Krishnendu, P. V. Redkin, C. Guo. Laser ablation–induced synthesis and nonlinear optical characterization of titanium and cobalt nanoparticles. J. Nanopart. Res., 20, 285(2018).

    [45] A. Yariv. Optical Electronics(1991).

    [46] J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [47] H. Park, S.-G. Lee, S. Baek, T. Ha, S. Lee, B. Min, S. Zhang, M. Lawrence, T.-T. Kim. Observation of an exceptional point in a non-Hermitian metasurface. Nanophotonics, 9, 1031-1039(2020).

    [48] H. Hodaei, M. A. Miri, A. U. Hassan, W. Hayenga, M. Heinrich, D. Christodoulides, M. Khajavikhan. Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt. Lett., 40, 4955-4958(2015).

    [49] L. Wang, Y. Zhang, X. Guo, T. Chen, H. Liang, X. Hao, X. Hou, W. Kou, Y. Zhao, T. Zhou. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials, 9, 965(2019).

    [50] R. Degl’Innocenti, S. J. Kindness, H. E. Beere, D. A. Ritchie. All-integrated terahertz modulators. Nanophotonics, 7, 127-144(2018).

    [51] H. Qian, S. Li, C.-F. Chen, S.-W. Hsu, S. E. Bopp, Q. Ma, A. R. Tao, Z. Liu. Large optical nonlinearity enabled by coupled metallic quantum wells. Light Sci. Appl., 8, 13(2019).

    [52] H. Qian, S. Li, Y. Li, C.-F. Chen, W. Chen, S. E. Bopp, Y.-U. Lee, W. Xiong, Z. Liu. Nanoscale optical pulse limiter enabled by refractory metallic quantum wells. Sci. Adv., 6, eaay3456(2020).

    [53] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [54] M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, W. Cai. Hot-electron-assisted femtosecond all-optical modulation in plasmonics. Adv. Mater., 30, 1704915(2018).

    [55] F. Cheng, C. Wang, Z. Su, X. Wang, Z. Cai, N. X. Sun, Y. Liu. All-optical manipulation of magnetization in ferromagnetic thin films enhanced by plasmonic resonances. Nano Lett., 20, 6437-6443(2020).

    [56] K. Wang, H. Qian, Z. Liu, P. K. Yu. Second-order nonlinear susceptibility enhancement in gallium nitride nanowires. Prog. Electromagn. Res., 168, 25-30(2020).

    [57] M. E. Ramon, A. Gupta, C. Corbet, D. A. Ferrer, H. C. Movva, G. Carpenter, L. Colombo, G. Bourianoff, M. Doczy, D. Akinwande. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano, 5, 7198-7204(2011).

    [58] M. Si, J. Andler, X. Lyu, C. Niu, S. Datta, R. Agrawal, P. D. Ye. Indium–tin-oxide transistors with one nanometer thick channel and ferroelectric gating. ACS Nano, 14, 11542-11547(2020).

    [59] S. Ellingson. Electromagnetics, 1(2018).

    Hongbin Ma, Dongdong Li, Nanxuan Wu, Yiyun Zhang, Hongsheng Chen, Haoliang Qian. Nonlinear all-optical modulator based on non-Hermitian PT symmetry[J]. Photonics Research, 2022, 10(4): 980
    Download Citation