• Photonics Research
  • Vol. 8, Issue 4, 448 (2020)
Gui-Shi Liu1、†, Xin Xiong1、†, Shiqi Hu1, Weicheng Shi1, Yaofei Chen2、3、5、*, Wenguo Zhu2, Huadan Zheng1、3, Jianhui Yu1、3, Nur Hidayah Azeman1、4, Yunhan Luo1、2、6、*, and Zhe Chen2、3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
  • 2Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • 3Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
  • 4Photonics Technology Laboratory, Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • 5e-mail: chenyaofei@jnu.edu.cn
  • 6e-mail: yunhanluo@163.com
  • show less
    DOI: 10.1364/PRJ.382567 Cite this Article Set citation alerts
    Gui-Shi Liu, Xin Xiong, Shiqi Hu, Weicheng Shi, Yaofei Chen, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Nur Hidayah Azeman, Yunhan Luo, Zhe Chen. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photonics Research, 2020, 8(4): 448 Copy Citation Text show less
    References

    [1] E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, S. Szunerits. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci., 15, 208-224(2011).

    [2] O. Tabasi, C. Falamaki. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Anal. Meth., 10, 3906-3925(2018).

    [3] L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, D.-H. Kim. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 10, 213-239(2015).

    [4] M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, M. D. Walkinshaw. A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A. Anal. Biochem., 345, 214-226(2005).

    [5] S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, K.-T. Yong. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B, 176, 1128-1133(2013).

    [6] S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, F. Luan. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6, 491(2011).

    [7] Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, C.-C. Huang. Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal. Chem., 81, 9433-9439(2009).

    [8] S. Singh, B. D. Gupta. Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas. Sci. Technol., 21, 115202(2010).

    [9] A. Lahav, A. Shalabaney, I. S. Abdulhalim. Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J. Nanophoton., 3, 031501(2009).

    [10] R. Tabassum, B. D. Gupta. Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J. Sel. Top. Quantum Electron., 23, 81-88(2017).

    [11] H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, D. Song. A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay. Small, 9, 2537-2540(2013).

    [12] M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, M. Liu. Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing. ACS Appl. Mater. Interface, 10, 5933-5940(2018).

    [13] Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, Z. Chen. MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement. Adv. Opt. Mater., 7, 1900479(2019).

    [14] H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, Y. Luo. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photon. Res., 6, 485-491(2018).

    [15] S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, K.-T. Yong. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B, 207, 801-810(2015).

    [16] R. B. Schasfoort. Handbook of Surface Plasmon Resonance(2017).

    [17] M. Piliarik, J. Homola. Surface plasmon resonance (SPR) sensors: approaching their limits?. Opt. Express, 17, 16505-16517(2009).

    [18] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883-3897(2015).

    [19] B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, B. Ren. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater., 30, 1706031(2018).

    [20] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, J. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun., 4, 2381(2013).

    [21] M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, O. J. F. Martin. Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano, 9, 7621-7633(2015).

    [22] K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621(2016).

    [23] R. Ameling, H. Giessen. Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photon. Rev., 7, 141-169(2013).

    [24] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [25] A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, D. Chanda. Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances. Phys. Rev. Lett., 113, 263902(2014).

    [26] Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, H.-B. Sun. Strong coupling in hybrid plasmon-modulated nanostructured cavities. Appl. Phys. Lett., 105, 191117(2014).

    [27] R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, H. Giessen. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett., 97, 253116(2010).

    [28] H. Jiang, H. Chen, H. Li, Y. Zhang, S. Zhu. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett., 83, 5386-5388(2003).

    [29] J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett., 23, 1573-1575(1998).

    [30] Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, T. B. Norris. Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal. Chem., 82, 5211-5218(2010).

    [31] X. Zhang, X.-S. Zhu, Y.-W. Shi. Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure. Opt. Express, 26, 130-140(2018).

    [32] V. Konopsky. Long-range surface plasmon amplification with current injection on a one-dimensional photonic crystal surface. Opt. Lett., 40, 2261-2264(2015).

    [33] A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, D. Mantovani. Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors. ACS Appl. Mater. Interface, 10, 33611-33618(2018).

    [34] V. V. Klimov, A. A. Pavlov, I. V. Treshin, I. V. Zabkov. Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. J. Phys. D, 50, 285101(2017).

    [35] K. Meradi, F. Tayeboun, F. Benkabou. Surface plasmon sensor based on a dual dielectric–silver photonic crystal. J. Russ. Laser Res., 37, 180-184(2016).

    [36] J. Y. Ye, M. Ishikawa. Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration. Opt. Lett., 33, 1729-1731(2008).

    [37] J. Homola. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem., 377, 528-539(2003).

    [38] V. Chabot, Y. Miron, M. Grandbois, P. G. Charette. Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sens. Actuators B, 174, 94-101(2012).

    [39] Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, Z.-Y. Chen. Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors, 17, 1846(2017).

    [40] R. Tabassum, B. D. Gupta. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Opt. Commun., 367, 23-34(2016).

    [41] J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, Y. Wang. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B, 230, 206-211(2016).

    [42] B. Choi, X. Dou, Y. Fang, B. M. Phillips, P. Jiang. Outstanding surface plasmon resonance performance enabled by templated oxide gratings. Phys. Chem. Chem. Phys., 18, 26078-26087(2016).

    [43] A. K. Mishra, S. K. Mishra, B. D. Gupta. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun., 344, 86-91(2015).

    [44] S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 43, 3426-3452(2014).

    [45] Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, Z. Chen. Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer. Opt. Express, 26, 34250-34258(2018).

    [46] X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, B. Y. Zhang. Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals. Optik, 127, 135-138(2016).

    CLP Journals

    [1] Francesco Arcadio, Luigi Zeni, Domenico Montemurro, Caterina Eramo, Stefania Di Ronza, Chiara Perri, Girolamo D’Agostino, Guido Chiaretti, Giovanni Porto, Nunzio Cennamo. Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers[J]. Photonics Research, 2021, 9(7): 1397

    Gui-Shi Liu, Xin Xiong, Shiqi Hu, Weicheng Shi, Yaofei Chen, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Nur Hidayah Azeman, Yunhan Luo, Zhe Chen. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photonics Research, 2020, 8(4): 448
    Download Citation