• Photonics Research
  • Vol. 10, Issue 10, 2422 (2022)
Ranjan Das1、†,*, Yanran Xie1、†, Henry Frankis1, Keru Chen1, Hermann Rufenacht2, Guillaume Lamontagne2, Jonathan D. B. Bradley1, and Andrew P. Knights1
Author Affiliations
  • 1Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
  • 2McDonald Detwiler Associates, Sainte-Anne-de-Bellevue, Quebec H9X 3R2, Canada
  • show less
    DOI: 10.1364/PRJ.463832 Cite this Article Set citation alerts
    Ranjan Das, Yanran Xie, Henry Frankis, Keru Chen, Hermann Rufenacht, Guillaume Lamontagne, Jonathan D. B. Bradley, Andrew P. Knights. Gain-enabled optical delay readout unit using CMOS-compatible avalanche photodetectors[J]. Photonics Research, 2022, 10(10): 2422 Copy Citation Text show less
    References

    [1] D. Perez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 636(2017).

    [2] M. Ma, R. Adams, L. R. Chen. Integrated photonic chip enabled simultaneous multichannel wideband radio frequency spectrum analyzer. J. Lightwave Technol., 35, 2622-2628(2017).

    [3] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 10, 711-734(2016).

    [4] A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications(2006).

    [5] R. Selim, R. Hoofman, M. Khoder, A. Masood, C. Littlejohns, D. Geuzebroek, R. Grootjans, T. Drischel, K. Torki. Silicon photonics open access foundry services review for emerging technology. Proc. SPIE, 11880, 118800C(2021).

    [6] A. Rahim, T. Spuesens, R. Baets, W. Bogaerts. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [7] N. S. Janosik, X. Meng, K. Bergman. Constant runtime integrated microring-based silicon photonic sorting accelerator. Photonics North (PN), 1(2019).

    [8] K.-I. Kitayama, M. Notomi, M. Naruse, K. Inoue, S. Kawakami, A. Uchida. Novel frontier of photonics for data processing—photonic accelerator. APL Photon., 4, 090901(2019).

    [9] J. C. Adcock, J. Bao, Y. Chi, X. Chen, D. Bacco, Q. Gong, L. K. Oxenløwe, J. Wang, Y. Ding. Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 27, 6700224(2021).

    [10] G.-Q. Lo, K.-W. Ang, T. Y. Liow, Q. Fang, J. Zhang, S. Y. Zhu, J. F. Song, Y. Z. Xiong, F. F. Ren, M. Yu, D.-L. Kwong. Silicon photonics technologies for monolithic electronic-photonic integrated circuit [Invited]. ECS Trans., 28, 3-11(2010).

    [11] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G.-Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [12] P. Minzioni, C. Lacava, T. Tanabe, J. Dong, X. Hu, G. Csaba, W. Porod, G. Singh, A. E. Willner, A. Almaiman, V. Torres-Company, J. Schröder, A. C. Peacock, M. J. Strain, F. Parmigiani, G. Contestabile, D. Marpaung, Z. Liu, J. E. Bowers, L. Chang, S. Fabbri, M. R. Vázquez, V. Bharadwaj, S. M. Eaton, P. Lodahl, X. Zhang, B. J. Eggleton, W. J. Munro, K. Nemoto, O. Morin, J. Laurat, J. Nunn. Roadmap on all-optical processing. J. Opt., 21, 063001(2019).

    [13] J. Capmany, I. Gasulla, D. Perez. The programmable processor. Nat. Photonics, 10, 6-8(2016).

    [14] C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, K. J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [15] M. Liu, Y. Zhao, X. Wang, X. Zhang, S. Gao, J. Dong, X. Cai. Widely tunable fractional-order photonic differentiator using a Mach-Zehnder interferometer coupled microring resonator. Opt. Express, 25, 33305-33314(2017).

    [16] C. Zhu, L. Lu, W. Shan, W. Xu, G. Zhou, L. Zhou, J. Chen. Silicon integrated microwave photonic beamformer. Optica, 7, 1162-1170(2020).

    [17] Y.-H. Hung, Q. Cheng, M. Glick, M. Badahori, L. Y. Dai, K. Bergman. Silicon photonic switch-based optical equalization for mitigating pulsewidth distortion. Opt. Express, 27, 19426-19435(2019).

    [18] A. Bhardwaj, N. Sauer, L. Buhl, W. Yang, L. Zhang, D. T. Neilson. Optical equalizer monolithically integrated with a semiconductor optical amplifier. Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC), 1-3(2007).

    [19] J. H. Zhao, C. K. Madsen. Optical Filter Design and Analysis: A Signal Processing Approach(1999).

    [20] S. Li, S. Dev, S. Kühl, K. Jamshidi, S. Pachnicke. Micro-ring resonator based photonic reservoir computing for PAM equalization. IEEE Photon. Technol. Lett., 33, 978-981(2021).

    [21] G. Lenz, B. Eggleton, C. Madsen, R. Slusher. Optical delay lines based on optical filters. IEEE J. Quantum Electron., 37, 525-532(2001).

    [22] A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, W. van Etten. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas. Part I. Design and performance analysis. J. Lightwave Technol., 28, 3-18(2010).

    [23] J. Xie, L. Zhou, Z. Li, J. Wang, J. Chen. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express, 22, 22707-22715(2014).

    [24] R. T. Schermer, F. Bucholtz, C. A. Villarruel. Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating. Opt. Express, 19, 5371-5378(2011).

    [25] K. Horikawa, I. Ogawa, T. Kitoh, H. Ogawa. Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications. Optical Fiber Communications (OFC), 100-101(1996).

    [26] Q. Zhang, S. Gupta, C. Caloz. Synthesis of narrowband reflection-type phasers with arbitrary prescribed group delay. IEEE Trans. Microw. Theory Tech., 60, 2394-2402(2012).

    [27] R. Das, T. Schneider. Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals. Opt. Lett., 45, 4778-4781(2020).

    [28] S. R. Konatham, R. Maram, J. Azaña. Real-time spectrogram analysis of continuous optical wavefields. IEEE Photonics Conference (IPC), 1-2(2018).

    [29] M. J. Marcus. Unlicensed cognitive sharing of TV spectrum: the controversy at the Federal Communications Commission. IEEE Commun. Mag., 43, 24-25(2005).

    [30] S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, A. Poon. Silicon photonics: from a microresonator perspective. Laser Photon. Rev., 6, 145-177(2012).

    [31] A. Matsko. Practical Applications of Microresonators in Optics and Photonics(2009).

    [32] A. Moscoso-Mártir, A. Tabatabaei-Mashayekh, J. Müller, J. Nojić, R. Setter, M. Nielsen, A. Sandomirsky, S. Rockman, E. Mentovich, F. Merget, A. Garreau, F. Lelarge, J. Witzens. 8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser. Opt. Express, 26, 25446-25459(2018).

    [33] N. Tessema, Z. Cao, J. van Zantvoort, A. Dubok, E. Tangdiongga, A. Smolders, A. Koonen. Radio beam-steering via tunable Si3N4 optical delays for multi-Gbps K-band satellite communication. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2016).

    [34] M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. Patel. Integrated resonance-enhanced variable optical delay lines. IEEE Photon. Technol. Lett., 17, 834-836(2005).

    [35] G. Choo, C. K. Madsen, S. Palermo, K. Entesari. Automatic monitor-based tuning of an RF silicon photonic 1x4 asymmetric binary tree true-time-delay beamforming network. J. Lightwave Technol., 36, 5263-5275(2018).

    [36] L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, A. Galtarossa. Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry. IEEE Photon. Technol. Lett., 23, 260-262(2011).

    [37] Z. Zhang, X. Bao. Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system. Opt. Express, 16, 10240-10247(2008).

    [38] A. Wegmuller, M. Legre, N. Gisin. Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry. J. Lightwave Technol., 20, 828-835(2002).

    [39] B. J. Soller, D. K. Gifford, M. S. Wolfe, M. E. Froggatt. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express, 13, 666-674(2005).

    [40] C. Caloz, S. Gupta, Q. Zhang, B. Nikfal. Analog signal processing: a possible alternative or complement to dominantly digital radio schemes. IEEE Microwave Mag., 14, 87-103(2013).

    [41] X. Chapeleau, D. Leduc, C. Lupi, R. Le Ny, M. Douay, P. Niay, C. Boisrobert. Experimental synthesis of fiber Bragg gratings using optical low coherence reflectometry. Appl. Phys. Lett., 82, 4227-4229(2003).

    [42] J. Scott, M. Hoy. Group-delay measurement of frequency-converting devices using a comb generator. IEEE Trans. Instrum. Meas., 59, 3012-3017(2010).

    [43] X. Zhu, Y. Li, S. Yong, Z. Zhuang. A novel definition and measurement method of group delay and its application. IEEE Trans. Instrum. Meas., 58, 229-233(2009).

    [44] M. Wang, Y. Hu, S. Zhang, H. Wang, X. Zou, Y. Zhang, Y. Liu. Accurate time-delay measurement of optical delay components based on frequency-shifted self-heterodyne spectrum. Proc. SPIE, 10812, 108120E(2018).

    [45] L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, W. van Etten. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas. Part II. Experimental prototype. J. Lightwave Technol., 28, 19-31(2010).

    [46] H. Z. Peek, T. J. Pinkert, P. P. M. Jansweijer, J. C. J. Koelemeij. Measurement of optical to electrical and electrical to optical delays with ps-level uncertainty. Opt. Express, 26, 14650-14660(2018).

    [47] S. K. Mitra. Digital Signal Processing: A Computer-Based Approach(2007).

    [48] D. M. Pozar. Microwave Engineering(2012).

    [49] J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights. 10 Gbps silicon waveguide-integrated infrared avalanche photodiode. Opt. Express, 21, 19530-19537(2013).

    [50] Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics, 3, 59-63(2009).

    [51] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [52] B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [53] Lumerical Inc.. https://www.lumerical.com/products(2021). https://www.lumerical.com/products

    [54] M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz. Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW−1 response. Opt. Express, 17, 5193-5204(2009).

    [55] X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, R. G. Beausoleil. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 6, 772-777(2019).

    [56] S. M. Sze. Physics of Semiconductor Devices(1981).

    [57] R. Anthony, D. E. Hagan, D. Genuth-Okon, L. Martinez Maestro, I. F. Crowe, M. P. Halsall, A. P. Knights. Extended wavelength responsivity of a germanium photodetector integrated with a silicon waveguide exploiting the indirect transition. IEEE J. Sel. Top. Quantum Electron., 26, 3800107(2020).

    [58] A. Ribeiro, K. Miura, T. Spuesens, W. Bogaerts. On-chip differential phase monitoring with balanced photodiodes. IEEE 13th International Conference on Group IV Photonics (GFP), 80-81(2016).

    [59] A. Karim, J. Devenport. High dynamic range microwave photonic links for RF signal transport and RF-IF conversion. J. Lightwave Technol., 26, 2718-2724(2008).

    [60] Y. Wei, Y. Zhao, J. Yang, M. Wang, X. Jiang. Chirp characteristics of silicon Mach–Zehnder modulator under small-signal modulation. J. Lightwave Technol., 29, 1011-1017(2011).

    Ranjan Das, Yanran Xie, Henry Frankis, Keru Chen, Hermann Rufenacht, Guillaume Lamontagne, Jonathan D. B. Bradley, Andrew P. Knights. Gain-enabled optical delay readout unit using CMOS-compatible avalanche photodetectors[J]. Photonics Research, 2022, 10(10): 2422
    Download Citation