• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210009 (2022)
Wei Lin1, Haihua Cui1、*, Wei Zheng2, Xinfang Zhou2, Zhenlong Xu1, and Wei Tian1
Author Affiliations
  • 1College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • 2AVIC Xi'an Aircraft Industry Group Co., Ltd., Xi'an 710089, Shaanxi, China
  • show less
    DOI: 10.3788/LOP202259.2210009 Cite this Article Set citation alerts
    Wei Lin, Haihua Cui, Wei Zheng, Xinfang Zhou, Zhenlong Xu, Wei Tian. Phase Fringe Pattern Filtering Method for Shearography Using Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210009 Copy Citation Text show less
    References

    [1] Wang Y H, Lü Y B, Gao X Y et al. Research progress in shearography and its applications[J]. Chinese Optics, 10, 300-309(2017).

    [2] Li Y Y, Wu S J, Li W X et al. Simultaneous measurement of displacement and slope with dual-function digital speckle pattern interferometry[J]. Acta Photonica Sinica, 49, 0612002(2020).

    [3] Wang Y H, Xie H T, Sun F Y et al. Spatial carrier phase-shift shearography based on LC-SLM[J]. Acta Optica Sinica, 41, 1512001(2021).

    [4] Wu M Y, Ma Y H, Cheng H et al. Color-camera-based dual-wavelength shearography for simultaneously measuring in-plane and out-of-plane displacement derivatives[J]. Acta Optica Sinica, 40, 1812002(2020).

    [5] Wang Y H, Li J R, Sun J F et al. Frequency domain filtering for phase fringe patterns of digital speckle pattern interferometry[J]. Chinese Optics, 7, 389-395(2014).

    [6] Aebischer H A, Waldner S. A simple and effective method for filtering speckle-interferometric phase fringe patterns[J]. Optics Communications, 162, 205-210(1999).

    [7] Gu G Q, Wang K F, Yan X J. Electronic speckle interferometry image processing based on homomorphic filtering[J]. Laser Technology, 34, 750-752, 797(2010).

    [8] Stanke L, Šmíd P, Horváth P. ESPI correlogram analysis by two stage application of wavelet transform with use of intensity thresholding[J]. Optik, 126, 865-870(2015).

    [9] Jiang H Y, Dai M L, Su Z L et al. An adaptive sine/cosine filtering algorithm based on speckle phase fringe orientation[J]. Acta Optica Sinica, 37, 0910001(2017).

    [10] Xu W J, Tang C, Xu M et al. Fuzzy c-means clustering based segmentation and the filtering method for discontinuous ESPI fringe patterns[J]. Applied Optics, 58, 1442-1450(2019).

    [11] Wei N, Yang J H, Liu R X. Denoising for variable density ESPI fringes in nondestructive testing by an adaptive multiscale morphological filter based on local mean[J]. Applied Optics, 58, 7749-7759(2019).

    [12] Liu J, Huang X H, Wu J H et al. Adaptive total variation speckle denoising method based on sine-cosine decomposition[J]. Chinese Journal of Lasers, 47, 1004004(2020).

    [13] Zhang Y Q, He N, Zhen X Y et al. Research on image denoising based on machine learning[J]. Computer Science, 44, 129-132(2017).

    [14] Deng Z L. Research on image denoising algorithm based on deep learning[D](2018).

    [15] Feng Y N. Research and improvement of the deep learning based image denoising algorithm[D](2019).

    [16] Wu Y W. Deep learning based image denoising algorithm[D](2015).

    [17] Lopes H, dos Santos J V A, Moreno-García P. Evaluation of noise in measurements with speckle shearography[J]. Mechanical Systems and Signal Processing, 118, 259-276(2019).

    [18] Pang W Y. Research on image style transfer optimization method based on deep learning[D](2020).

    [19] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).

    [20] Wang K F, Gou C, Duan Y J et al. Generative adversarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 43, 321-332(2017).

    [21] Han Z S, Wang C P, Fu Q et al. Remote sensing image mode translation by spatial disentangled representation based GAN[J]. Acta Optica Sinica, 41, 0728003(2021).

    [22] Wang D W, Li S L, Han P F et al. Feature constraint CycleGAN for single image dehazing algorithm[J]. Laser & Optoelectronics Progress, 58, 1410017(2021).

    [23] Mao X D, Li Q, Xie H R et al. Multi-class generative adversarial networks with the L2 loss function[EB/OL]. https://arxiv.org/abs/1611.04076v1

    [24] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [25] Kingma D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980

    [26] Wang Z X, Hu S T, Xia Z T et al. DSPI image denoising method based on sine-cosine decomposition and BM3D filtering[J]. Automation & Instrumentation, 1-6, 10(2021).

    [27] Jin X, Zhang J X. A self-adaptive weighted-median filter for InSAR interferograms[J]. Journal of Geomatics, 41, 12-15(2016).

    Wei Lin, Haihua Cui, Wei Zheng, Xinfang Zhou, Zhenlong Xu, Wei Tian. Phase Fringe Pattern Filtering Method for Shearography Using Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210009
    Download Citation