• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922006 (2022)
Yanli Li, Xianhe Liu, and Qiang Wu*
Author Affiliations
  • School of Microelectronics, Fudan University, Shanghai 201203, China
  • show less
    DOI: 10.3788/LOP202259.0922006 Cite this Article Set citation alerts
    Yanli Li, Xianhe Liu, Qiang Wu. Evolution and Updates of Advanced Photolithography Technology[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922006 Copy Citation Text show less
    Evolution of the EPDL for gate, metal and via layers[36]
    Fig. 1. Evolution of the EPDL for gate, metal and via layers[36]
    Simulated LWR as a function of EPDL with CF Litho-EUV (exposure condition: dipole illumination with NA of 0.33, pitch of 27 nm, trench CD of 15 nm) [37]
    Fig. 2. Simulated LWR as a function of EPDL with CF Litho-EUV (exposure condition: dipole illumination with NA of 0.33, pitch of 27 nm, trench CD of 15 nm) [37]
    Plots of reflectivity versus EUV and incident angle for an ideal Mo/Si multilayer (40 bilayers) and an ideal Ru/Si multilayer (20 bilayers). (a) Reflectivity versus wavelength; (b) reflectivity versus incident angle
    Fig. 3. Plots of reflectivity versus EUV and incident angle for an ideal Mo/Si multilayer (40 bilayers) and an ideal Ru/Si multilayer (20 bilayers). (a) Reflectivity versus wavelength; (b) reflectivity versus incident angle
    Simulated EL for various technology nodes[36]
    Fig. 4. Simulated EL for various technology nodes[36]
    Simulated MEF for various technology nodes[36]
    Fig. 5. Simulated MEF for various technology nodes[36]
    DoF for various technology nodes[36]
    Fig. 6. DoF for various technology nodes[36]
    Cross section structure of EUV binary mask and EUV PSM. (a) EUV binary mask[39]; (b) EUV PSM[48]
    Fig. 7. Cross section structure of EUV binary mask and EUV PSM. (a) EUV binary mask[39]; (b) EUV PSM[48]
    Node /nmGate pitch /nmGate CD /nmExposure toolPhotoresistMaskOPCEL /%MEFDoF /nmRETARCEtchCDU
    250500250248 nm248 nm CARBinaryRule based19.31.47500‒600SerifSingle layer
    180430180248 nm248 nm CAR6% PSMRule based17.71.39450Serif,OAI,CVISingle layer
    130310150248 nm248 nm CAR,Low Ea6% PSMModel based18.91.66350Serif,OAI,CVI,SRAFSingle layerLinewidth trimWafer
    90240120193 nm Dry193 nm CAR,High Ea6% PSMModel based19.71.56350Serif,OAI,CVI,SRAF,QuadSingle layerLinewidth trimWafer and shot
    6521090193 nm Dry193 nm CAR,High Ea6% PSMModel based18.61.51250Serif,OAI,CVI,SRAF,QuadSingle layerLinewidth trimWafer and shot
    Node /nmMetal pitch /nmMetal CD /nmExposure toolPhotoresistMaskOPCEL /%MEFDoF /nmRETARCEtchCDU
    250640320248 nm248 nm CARBinaryRule based29.31.03600‒800SerifSingle layer
    180460230248 nm248 nm CAR6% PSMRule based18.11.85600Serif,OAI,CVISingle layer
    130340160248 nm248 nm CAR,Low Ea6% PSMModel based19.81.69350Serif,OAI,CVI,SRAFSingle layerWafer
    90240120193 nmDry193 nm CAR,Low Ea6% PSMModel based16.92.00350Serif,OAI,CVI,SRAF,QuadSingle layerWafer and shot
    6518090193 nmDry193 nm CAR,Low Ea6% PSMModel based13.42.85200Serif,OAI,CVI,SRAF,QuadSingle layerWafer and shot
    Node /nmVia pitch /nmVia CD /nmExposure toolPhotoresistMaskOPCEL /%MEFDoF /nmRETARCEtchCDU
    250640300248 nm248 nm CARBinaryRule based27.81.68600‒800SerifSingle layer
    180460230248 nm248 nm CAR6% PSMRule based25.02.33580Serif,OAI,CVISingle layer
    130340160248 nm248 nm CAR,Low Ea6% PSMModel based17.64.12330Serif,OAI,CVI,SRAFSingle layerWafer
    90240160193 nm Dry193 nm CAR,Low Ea6% PSMModel based15.14.82330Serif,OAI,CVI,SRAFSingle layerWafer and shot
    65200130193 nm Dry193 nm CAR,Low Ea6% PSMModel based15.04.90230Serif,OAI,CVI,SRAFSingle layerWafer and shot
    Table 1. Summary of photolithography processes of 250 nm, 180 nm, 130 nm, 90 nm, and 65 nm nodes
    146432193 nmWater immersion193 nm CAR,Mid Ea,PDB,NTD6% PSM,OMOGModel based12.93.1760‒80Serif,OAI,CVI,SRAF,Quad,Polarized imaging,SMO,NTDBi layerWafer and shotLELE
    74020193 nmWater immersion193 nm CAR,Low Ea,PDB,NTD6% PSMModel based12.73.5055‒70Serif,OAI,CVI,SRAF,Quad,Polarized imaging,SMO,NTDBi layerMetal SALELEWafer and shotSALELE,CutUni-directional
    Node /nmVia pitch /nmVia CD /nmExposure toolPhotoresistMaskOPCEL /%MEFDoF /nmRETARCEtchCDUMultiple patterningSelf-aligned method
    4518090193 nmWater immersion193 nm CAR,Low Ea6% PSMModel based18.03.53150Serif,OAI,CVI,SRAFSingle layerWafer and shot
    2810065193 nmWater immersion193 nm CAR,Low Ea6% PSMModel based15.15.2075Serif,OAI,CVI,SRAF,Polarized imagingSingle layerShrinkWafer and shot
    166442193 nmWater immersion193 nm CAR,Low Ea,PDB6% PSMModel based14.65.2370Serif,OAI,CVI,SRAF,Polarized imaging,SMOBi layerShrinkWafer and shotLE4
    146442193 nmWater immersion193 nm CAR,Mid Ea,PDB,NTD6% PSMModel based12.47.7260‒70Serif,OAI,CVI,SRAF,Polarized imaging,SMO,NTDBi layerShrinkWafer and shotLE4
    75738193 nmWater immersion193 nm CAR,Low Ea,PDB,NTD6% PSMModel based12.96.9055‒70Serif,OAI,CVI,SRAF,Polarized imaging,SMO,NTDBi layerShrinkWafer and shotLE4
    Table 2. Summary of photolithography process of 45 nm, 28 nm, 16/14 nm, and 7 nm technology nodes
    Node /nmGate pitch /nmGate layer litho processMetal pitch /nmMetal layer litho processVia pitch /nmVia layer litho process
    250500248 nm640248 nm640248 nm
    180430248 nm460248 nm460248 nm
    130310248 nm340248 nm340248 nm
    90240193 nm Dry240193 nm Dry240193 nm Dry
    65210193 nm Dry180193 nm Dry200193 nm Dry
    45180193 nm Water immersion160193 nm Water immersion180193 nm Water immersion
    40162193 nm Water immersion100193 nm Water immersion130193 nm Water immersion
    32130193 nm Water immersion90193 nm Water immersion110193 nm Water immersion
    28118193 nm Water immersion90193 nm Water immersion100193 nm Water immersion
    2290193 nm Water immersion80193 nm Water immersion100193 nm Water immersion
    2090193 nm Water immersion64193 nm Water immersion LELE64193 nm Water immersion LE4
    16/1487193 nm Water immersion SADP64193 nm Water immersion LELE64193 nm Water immersion LE4
    1066193 nm Water immersion SADP44193 nm Water immersion SALELE66193 nm Water immersion LE4
    754193 nm Water immersion SADP40193 nm Water immersion SALELE57193 nm Water immersion LE4
    550193 nm Water immersion SADP300.33 NA EUV SALELE480.33 NA EUV
    342193 nm Water immersion SADP220.33 NA EUV SALELE360.33 NA EUV LE2
    2.132193 nm Water immersion SAQP160.55 NA EUV SALELE250.55 NA EUV LE3
    1.532193 nm Water immersion SAQP140.55 NA EUV SALELE200.55 NA EUV LE4
    132193 nm Water immersion SAQP140.55 NA EUV SALELE200.55 NA EUV LE4
    Table 3. Summary of design rules for critical layers from 250 nm to 1 nm technology nodes
    1.514713.5 nm 0.55 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based18.01.530‒40Serif,OAI,CVI,SRAF,Quad,SMOSingle layerWafer and shotSALELE,CutUni-directional
    114713.5 nm 0.55 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based18.01.530‒40Serif,OAI,CVI,SRAF,Quad,SMOSingle layerWafer and shotSALELE,CutUni-directional
    Node /nmVia pitch /nmVia CD /nmExposure toolPhotoresistMaskOPCEL /%MEFDoF /nmRETUnder LayerEtchCDUMultiple patterningSelf-aligned method
    5482413.5 nm0.33 NA EUVEUV CAR,Low Ea,PDBEUV binaryModel based18.0355Serif,OAI,CVI,SRAF,SMOSingle layerShrinkWafer and shot
    3361813.5 nm0.33 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based18.0355Serif,OAI,CVI,SRAF,SMOSingle layerShrinkWafer and shot0.33 NA LE2
    2.1251213.5 nm 0.55 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based20.0330‒40Serif,OAI,CVI,SRAF,SMOSingle layerShrinkWafer and shot0.55 NA LE3
    1.5201013.5 nm 0.55 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based20.0330‒40Serif,OAI,CVI,SRAF,SMOSingle layerShrinkWafer and shot0.55 NA LE4
    1201013.5 nm 0.55 NA EUVEUV CAR,Low Ea,PDB,Polymer bound PAGEUV binaryModel based20.0330‒40Serif,OAI,CVI,SRAF,SMOSingle layerShrinkWafer and shot0.55 NA LE4
    Table 4. Summary of photolithography process of 5 nm and outlook for the future 3 nm, 2.1 nm, 1.5 nm and 1 nm technology nodes
    Yanli Li, Xianhe Liu, Qiang Wu. Evolution and Updates of Advanced Photolithography Technology[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922006
    Download Citation