• Journal of Semiconductors
  • Vol. 40, Issue 6, 062003 (2019)
Hua Pang1, Jiahuan Yan1, Jie Yang1, Shiqi Liu1, Yuanyuan Pan1, Xiuying Zhang1, Bowen Shi1, Hao Tang1, Jinbo Yang1、2, Qihang Liu3, Lianqiang Xu4, Yangyang Wang5, and Jing Lv1、2、6
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 3Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
  • 4School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan 756000, China
  • 5Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
  • 6Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL-MEMD), Beijing 100871, China
  • show less
    DOI: 10.1088/1674-4926/40/6/062003 Cite this Article
    Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces[J]. Journal of Semiconductors, 2019, 40(6): 062003 Copy Citation Text show less
    References

    [1] M M Waldrop. The chips are down for Moore's law. Nature, 530, 144(2016).

    [2] S B Desai, S R Madhvapathy, A B Sachid et al. MoS2 transistors with 1-nanometer gate lengths. Science, 354, 99(2016).

    [3] R Quhe, Q Li, Q Zhang et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl, 10, 024022(2018).

    [4] Y Wang, R Fei, R Quhe et al. Many-body effect and device performance limit of monolayer InSe. Acs Appl Mater Inter, 10, 23344(2018).

    [5] Y Wang, P Huang, M Ye et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater, 29, 2191(2017).

    [6] Z Ni, M Ye, J Ma et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv Electron Mater, 2, 1600191(2016).

    [7] Y Pan, Y Wang, L Wang et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale, 7, 2116(2015).

    [8] H Li, J Tie, J Li et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res, 11, 2658(2018).

    [9] R Quhe, J Liu, J Wu et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale, 11, 532(2019).

    [10] J Kang, W Liu, D Sarkar et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 4, 031005(2014).

    [11] F Schwierz, J Pezoldt, R Granzner. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 7, 8261(2015).

    [12] Y Liu, N O Weiss, X Duan et al. Van der Waals heterostructures and devices. Nat Rev Mater, 1, 16042(2016).

    [13] G Fiori, F Bonaccorso, G Iannaccone et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 9, 1063(2014).

    [14] D A Bandurin, A V Tyurnina, G L Yu et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol, 12, 223(2017).

    [15] Y Zhao, J Qiao, Z Yu et al. high-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 29, 1604230(2017).

    [16] J Wu, H Yuan, M Meng et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol, 12, 530(2017).

    [17] X Huang, J Guan, Z Lin et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 17, 4619(2017).

    [18] J Chen, Y Dai, Y Ma et al. Ultrathin beta-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 9, 15945(2017).

    [19] Y Wang, G Qiu, R Wang et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 1, 228(2018).

    [20] Z Zhu, X Cai, S Yi et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys Rev Lett, 119, 106101(2017).

    [21] A Coker, T Lee, T P Das. Investigation of the electronic properties of tellurium—energy-band structure. Phys Rev B, 22, 2968(1980).

    [22] V B Anzin, M I Eremets, Y V Kosichkin et al. Measurement of energy-gap in tellurium under pressure. Phys Status Solidi A, 42, 385(1977).

    [23] J Qiao, Y Pan, F Yang et al. Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 63, 159(2018).

    [24] W Bao, X Cai, D Kim et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phy Lett, 102, 042104(2013).

    [25] D Jariwala, V K Sangwan, D J Late et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 102, 699(2013).

    [26] S Kim, A Konar, W S Hwang et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 3(2012).

    [27] S Larentis, B Fallahazad, E Tutuc. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 101, 193(2012).

    [28] N R Pradhan, D Rhodes, Y Xin et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. Acs Nano, 8, 7923(2014).

    [29] B Chamlagain, Q Li, N J Ghimire et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on Parylene-C substrate. Acs Nano, 8, 5079(2014).

    [30] L Li, Y Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [31] J Qiao, X Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [32] A Allain, J Kang, K Banerjee et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 14, 1195(2015).

    [33] H Liu, Y Du, Y Deng et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev, 44, 2732(2015).

    [34] R T Tung. The physics and chemistry of the Schottky barrier height. Appl Phys Rev, 1, 251(2014).

    [35] S Liu, J Li, B Shi et al. Gate-tunable interfacial properties of in-plane ML MX2 1T '-2H heterojunctions. J Mater Chem C, 6, 7400(2018).

    [36] J Yang, R Quhe, S Feng et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys Chem Chem Phys, 19, 23982(2017).

    [37] J Yan, X Zhang, Y Pan et al. Monolayer tellurene-metal contacts. J Mater Chem C, 6, 6153(2018).

    [38] Y Pan, i S Li, e M Ye et al. Interfacial properties of monolayer MoSe2–metal contacts. J Phys Chem C, 120, 13063(2016).

    [39] Y Pan, S Li, M Ye et al. Interfacial properties of monolayer MoSe2-metal contacts. J Phys Chem C, 120, 13063(2016).

    [40] G Kresse, J Hafner. Abintio molecular-dynamics for liquid-metals. Phys Rev B, 47, 558(1993).

    [41] G Kresse, J Hafner. Ab-intio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition on germanium. Phys Rev B, 49, 14251(1994).

    [42] G Kresse, J Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 6, 15(1996).

    [43] G Kresse, J Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [44] H J Monkhorst, J D Pack. Special points for Billouin-Zone integrations. Phys Rev B, 13, 5188(1976).

    [45] S Grimme, J Antony, S Ehrlich et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 132, 154104(2010).

    [46]

    [47] M Brandbyge, J L Mozos, P Ordejon et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 65, 165401(2002).

    [48] D R Smith, S Schultz, P Markos et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B, 65, 195104(2002).

    [49] A H D Cheng, D T Cheng. Heritage and early history of the boundary element method. Eng Anal Bound Elem, 29, 268(2005).

    [50] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [51] Y Zhang, T R Chang, B Zhou et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 9, 111(2014).

    [52] Y Pan, Y Wang, M Ye et al. Monolayer phosphorene-metal contacts. Chem Mater, 28, 2100(2016).

    [53] Y Pan, Y Dan, Y Wang et al. Schottky barriers in bilayer phosphorene transistors. Acs Appl Mater Inter, 9, 12694(2017).

    [54] X Zhang, Y Pan, M Ye et al. Three-layer phosphorene-metal interfaces. Nano Res, 11, 707(2018).

    [55] B Shi, Y Wang, J Li et al. n-type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Phys Chem Chem Phys, 20, 24641(2018).

    [56] H Zhong, Q Ruge, Y Wang et al. Interfacial properties of ponolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci Rep, 6, 21786(2016).

    [57] W Hu, T Wang, J Yang. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J Mater Chem C, 3, 4756(2015).

    [58] Y Wang, M Ye, M Weng et al. Electrical contacts in monolayer arsenene devices. Acs Appl Mater Inter, 9, 29273(2017).

    [59] C Kim, I Moon, D Lee et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. Acs Nano, 11, 1588(2017).

    [60] S Liu, L Xu, Y Pan et al. Unusual Fermi level pinning and Ohmic contact at monolayer Bi2O2Se - metal interface. Submitted(2018).

    [61] Y Liu, P Stradins, S H Wei. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv, 2, e1600069(2016).

    [62] J E Padilha, A Fazzio, A J R da Silva. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett, 114, 066803(2015).

    [63] A Avsar, I J Vera-Marun, J Y Tan et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. Acs Nano, 9, 4138(2015).

    Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces[J]. Journal of Semiconductors, 2019, 40(6): 062003
    Download Citation