Tian-Tian CHENG, Kun ZHANG, Man LUO, Yu-Xin MENG, Yuan-Ze ZU, Yi-Jin WANG, Peng WANG, Chen-Hui YU. Research progress on first-principles calculations of interfacial charge transfer characteristics in InAs-based van der Waals heterojunctions[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 666

Search by keywords or author
- Journal of Infrared and Millimeter Waves
- Vol. 42, Issue 5, 666 (2023)

Fig. 1. First-principles calculations theoretical framework and current research hotspots in InAs-based vdW heterojunctions
![(a)Crystal structure of bulk InAs[1]. Top and side view of geometric structures for(b-c)monolayer[62] and(d-e)bilayer[50] InAs with highlighted primitive unit cells](/richHtml/hwyhmb/2023/42/5/666/img_02.jpg)
Fig. 2. (a)Crystal structure of bulk InAs[1]. Top and side view of geometric structures for(b-c)monolayer[62] and(d-e)bilayer[50] InAs with highlighted primitive unit cells
![InAs-based vdW stacking configurations. From top to bottom and left to right are(a)InTS/GR and AsTS/GR vdW heterostructures[30];(b)InAs/GaSb-ABII and InAs/GaSb-AAII vdW heterostructures[34];(c)InAs/InP-AA vdW heterostructures[32];(d)InAs/GaSb-AB5,InAs/GaAs-BB3 and InAs/InP-BB5 vdW heterostructures[31];(e)InAs/PbTe vdW heterostructures[36];(f)InTS(111)/GR vdW heterostructures[28];(g)GR/InTS(111)and GR/AsTS(1¯1¯1¯)vdW heterostructures[27];(h)MoS2/InTS(111)and MoS2/AsTS(1¯1¯1¯)vdW heterostructures[27];(i)MoS2/InTS(111)and MoS2/AsTS(111)vdW heterostructures[35];(j)GR/InAs and h-BN/InAs vdW heterostructures[29];(k)EuS/InAs(001)-C1,EuS/InAs(001)-C3 and EuS/InAs(001)-C4 vdW heterostructures[33];(l)GR/InAs(110),GNR/InAs(110),GR/Au/InAs(110)and GNR/Au/InAs(110)vdW heterostructures[26]](/Images/icon/loading.gif)
Fig. 3. InAs-based vdW stacking configurations. From top to bottom and left to right are(a)InTS/GR and AsTS/GR vdW heterostructures[30];(b)InAs/GaSb-ABII and InAs/GaSb-AAII vdW heterostructures[34];(c)InAs/InP-AA vdW heterostructures[32];(d)InAs/GaSb-AB5,InAs/GaAs-BB3 and InAs/InP-BB5 vdW heterostructures[31];(e)InAs/PbTe vdW heterostructures[36];(f)InTS(111)/GR vdW heterostructures[28];(g)GR/InTS(111)and GR/AsTS( )vdW heterostructures[27];(h)MoS2/InTS(111)and MoS2/AsTS( )vdW heterostructures[27];(i)MoS2/InTS(111)and MoS2/AsTS(111)vdW heterostructures[35];(j)GR/InAs and h-BN/InAs vdW heterostructures[29];(k)EuS/InAs(001)-C1,EuS/InAs(001)-C3 and EuS/InAs(001)-C4 vdW heterostructures[33];(l)GR/InAs(110),GNR/InAs(110),GR/Au/InAs(110)and GNR/Au/InAs(110)vdW heterostructures[26]
![Interfacial charge transfer characteristics in InAs/GR vdW system.(a)InTS/GR vdW heterostructures,magenta and cyan represent the charge accumulation and depletion[30];(b)GR/Au/InAs vdW heterostructures[26];(c)InAs/GR vdW heterostructures,yellow and blue represent the charge accumulation and depletion[37];(d)InTS/GR vdW heterostructures,blue and red represent the charge accumulation and depletion[28];(e)GR/InAs vdW heterostructures,green and yellow represent the charge accumulation and depletion[27]](/Images/icon/loading.gif)
Fig. 4. Interfacial charge transfer characteristics in InAs/GR vdW system.(a)InTS/GR vdW heterostructures,magenta and cyan represent the charge accumulation and depletion[30];(b)GR/Au/InAs vdW heterostructures[26];(c)InAs/GR vdW heterostructures,yellow and blue represent the charge accumulation and depletion[37];(d)InTS/GR vdW heterostructures,blue and red represent the charge accumulation and depletion[28];(e)GR/InAs vdW heterostructures,green and yellow represent the charge accumulation and depletion[27]
![Band structures for(a-b)GR/InAs[26,27],(c)h-BN/InAs[29],(d)EuS/InAs[33] and(e)InAs/PbTe[36] vdW heterostructures;DOS for(f)MoS2/InTS and(g)MoS2/AsTS vdW heterostructures[35]](/Images/icon/loading.gif)
Fig. 5. Band structures for(a-b)GR/InAs[26,27],(c)h-BN/InAs[29],(d)EuS/InAs[33] and(e)InAs/PbTe[36] vdW heterostructures;DOS for(f)MoS2/InTS and(g)MoS2/AsTS vdW heterostructures[35]
![(a)DOS for the composite vdW system with insertion of monolayer BN between InAs and metal(Pd and Pt)[37];(b)I-V characteristics of InAs/GR vdW heterostructure device[28];(c)Trends in band gap variation of InAs/GaSb vdW heterostructures under external electric field modulation[34];(d)The SBH(ϕp and ϕn)and band gap(ϕp + ϕn)of GR/InAs vdW heterostructures under external electric fields modulation[30]](/Images/icon/loading.gif)
Fig. 6. (a)DOS for the composite vdW system with insertion of monolayer BN between InAs and metal(Pd and Pt)[37];(b)I-V characteristics of InAs/GR vdW heterostructure device[28];(c)Trends in band gap variation of InAs/GaSb vdW heterostructures under external electric field modulation[34];(d)The SBH(ϕp and ϕn)and band gap(ϕp + ϕn)of GR/InAs vdW heterostructures under external electric fields modulation[30]
![Optical absorption coefficient of(a)InAs/GaAs-BB3 and(b)InAs/GaSb-AB5[31],(c)InAs/GaSb-ABII and InAs/GaSb-AAII[34],(d)MoS2/InAs[27],(e)InAs/InP[32] vdW heterostructures;(f)For InAs/GaAs and InAs/GaSb vdW heterostructures,the PCE can be as high as 20.65% and over 18%,respectively[31]](/Images/icon/loading.gif)
Fig. 7. Optical absorption coefficient of(a)InAs/GaAs-BB3 and(b)InAs/GaSb-AB5[31],(c)InAs/GaSb-ABII and InAs/GaSb-AAII[34],(d)MoS2/InAs[27],(e)InAs/InP[32] vdW heterostructures;(f)For InAs/GaAs and InAs/GaSb vdW heterostructures,the PCE can be as high as 20.65% and over 18%,respectively[31]
![(a)Spin density across EuS/InAs vdW heterogeneous interface[73];(b)Spin polarization as a function of layer index in EuS/InAs vdW heterostructure[33]](/Images/icon/loading.gif)
Fig. 8. (a)Spin density across EuS/InAs vdW heterogeneous interface[73];(b)Spin polarization as a function of layer index in EuS/InAs vdW heterostructure[33]
|
Table 1. Computational details (vdW correction functionals and exchange-correlation functionals where GGA-PBE is omitted). Computational results for structural parameters and electronic properties (interlayer distance d (Å), charge transfer ΔQ (e) and band gap Eg (eV)) of energetically stable InAs-based vdW heterojunctions. The plus sign indicates the charge transfer from 2D layered materials to InAs materials, and the minus sign is the opposite. The upper labels i and d indicate the indirect and direct band gap, respectively.

Set citation alerts for the article
Please enter your email address