• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 5, 666 (2023)
Tian-Tian CHENG1, Kun ZHANG2, Man LUO1,2,*, Yu-Xin MENG1..., Yuan-Ze ZU1, Yi-Jin WANG1, Peng WANG2,** and Chen-Hui YU1,***|Show fewer author(s)
Author Affiliations
  • 1Jiangsu Key Laboratory of ASIC Design,School of Information Science and Technology,Nantong University,Nantong 226019,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.05.012 Cite this Article
    Tian-Tian CHENG, Kun ZHANG, Man LUO, Yu-Xin MENG, Yuan-Ze ZU, Yi-Jin WANG, Peng WANG, Chen-Hui YU. Research progress on first-principles calculations of interfacial charge transfer characteristics in InAs-based van der Waals heterojunctions[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 666 Copy Citation Text show less
    References

    [1] J X Dai, T Yang, Z T Jin et al. Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy. Nano Research, 15, 9954-9959(2022).

    [2] T F Xu, H L Wang, X Y Chen et al. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires. Nanotechnology, 31, 294004(2020).

    [3] H L Wang, F Wang, T F XU et al. Slowing hot-electron relaxation in mix-phase nanowires for hot-carrier photovoltaics. Nano Letters, 21, 7761-7768(2021).

    [4] H Kum, D Lee, W Kong et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics, 2, 439-450(2019).

    [5] Y Liu, Y Huang, X Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323-333(2019).

    [6] D Jariwala, T J Marks, M C Hersam. Mixed-dimensional van der Waals heterostructures. Nature Materials, 16, 170-181(2017).

    [7] X Zhu, N R Monahan, Z Gong et al. Charge transfer excitons at van der Waals interfaces. Journal of the American Chemical Society, 137, 8313-8320(2015).

    [8] H Wang, J Bang, Y Sun et al. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nature Communications, 7, 11504(2016).

    [9] P Yao, D He, P Zereshki et al. Nonlinear optical effect of interlayer charge transfer in a van der Waals heterostructure. Applied Physics Letters, 115, 263103(2019).

    [10] J Liu, Z Li, X Zhang et al. Unraveling energy and charge transfer in type-II van der Waals heterostructures. npj Computational Materials, 7, 191(2021).

    [11] C Jin, E Y Ma, O Karni et al. Ultrafast dynamics in van der Waals heterostructures. Nature Nanotechnology, 13, 994-1003(2018).

    [12] T F Xu, M Luo, N M Shen et al. Ternary 2D layered material FePSe3 and near-infrared photodetector. Advanced Electronic Materials, 7, 2100207(2021).

    [13] X Zhou, X Hu, J Yu et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Advanced Functional Materials, 28, 1706587(2018).

    [14] H Wang, Z Li, D Li et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Advanced Functional Materials, 31, 2103106(2021).

    [15] X Yu, X Wang, F Zhou et al. 2D van der Waals heterojunction nanophotonic devices: from fabrication to performance. Advanced Functional Materials, 31, 2104260(2021).

    [16] W D Hu, X S Chen, Z H Ye et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 99, 091101(2011).

    [17] WO Hu, ZH Ye, L Liao et al. 128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 39, 5184-5187(2014).

    [18] F Oba, Y Kumagai. Design and exploration of semiconductors from first principles: a review of recent advances. Applied Physics Express, 11, 060101(2018).

    [19] C Freysoldt, B Grabowski, T Hickel et al. First-principles calculations for point defects in solids. Reviews of Modern Physics, 86, 253-305(2014).

    [20] S Grimme. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463-1473(2004).

    [21] S Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787-1799(2006).

    [22] S Grimme, J Antony, S Ehrlich et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132, 154104(2010).

    [23] S Grimme, S Ehrlich, L Goerigk. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32, 1456-1465(2011).

    [24] A Tkatchenko, M Scheffler. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102, 073005(2009).

    [25] S Ponce, W Li, S Reichardt et al. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 83, 036501(2020).

    [26] D P Andrade, R H Miwa, G P Srivastava. Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: Anab initiostudy. Physical Review B, 84, 165322(2011).

    [27] F Ning, D Wang, Y-X Feng et al. Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures. Journal of Materials Chemistry C, 5, 9429-9438(2017).

    [28] F Ning, S-Z Chen, Y Zhang et al. Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure. Applied Surface Science, 496, 143629(2019).

    [29] T Akiyama, T Kawamura, T Ito. Computational discovery of stable phases of graphene and h-BN van der Waals heterostructures composed of group III–V binary compounds. Applied Physics Letters, 118, 023101(2021).

    [30] H Li, Y Liu, Z Bai et al. Ohmic contact in graphene and hexagonal III-V monolayer (GaP, GaAs, InP, and InAs) van der Waals heterostructures: role of electric field. Physics Letters A, 433, 128029(2022).

    [31] Y Chen, B Jia, X Guan et al. Design and analysis of III-V two-dimensional van der Waals heterostructures for ultra-thin solar cells. Applied Surface Science, 586, 152799(2022).

    [32] M Xie, Y Li, X Liu et al. Enhanced water splitting photocatalyst enabled by two-dimensional GaP/GaAs van der Waals heterostructure. Applied Surface Science, 591, 153198(2022).

    [33] M Yu, S Moayedpour, S Yang et al. Dependence of the electronic structure of the EuS/InAs interface on the bonding configuration. Physical Review Materials, 5, 064606(2021).

    [34] X Zhang, M Yang, L Chen et al. DFT study on the controllable electronic and optical properties of GaSb/InAs heterostructure. Journal of Materials Research, 37, 479-489(2021).

    [35] Z Santos, P P Dholabhai. Thermodynamic stability of defects in hybrid MoS2/InAs heterostructures. Computational Materials Science, 194, 110426(2021).

    [36] B Sa, Z Sun, B Wu. The development of two dimensional group IV chalcogenides, blocks for van der Waals heterostructures. Nanoscale, 8, 1169-1178(2016).

    [37] W Yu, J Li, Y Wu et al. Systematic investigation of the mechanical, electronic, and interfacial properties of high mobility monolayer InAs from first-principles calculations. Physical Chemistry Chemical Physics, 25, 10769-10777(2023).

    [38] W Hu, J Yang. First-principles study of two-dimensional van der Waals heterojunctions. Computational Materials Science, 112, 518-526(2016).

    [39] K Berland, V R Cooper, K Lee et al. Van der Waals forces in density functional theory: a review of the vdW-DF method. Reports Progress Physics, 78, 066501(2015).

    [40] S Lehtola, C Steigemann, M J T Oliveira et al. Recent developments in libxc — a comprehensive library of functionals for density functional theory. SoftwareX, 7, 1-5(2018).

    [41] K Burke. Perspective on density functional theory. Journal of Chemical Physics, 136, 150901(2012).

    [42] A D Becke. Perspective: fifty years of density-functional theory in chemical physics. Journal of Chemical Physics, 140, 18A301(2014).

    [43] J M Del Campo, J L Gazquez, S B Trickey et al. Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties. Journal of Chemical Physics, 136, 104108(2012).

    [44] M Shishkin, G Kresse. Implementation and performance of the frequency-dependent GW method within the PAW framework. Physical Review B, 74, 035101(2006).

    [45] G Roman-Perez, J M Soler. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Physical Review Letters, 103, 096102(2009).

    [46] K Lejaeghere, G Bihlmayer, T Bjoerkman et al. Reproducibility in density functional theory calculations of solids. Science, 351, aad3000(2016).

    [47] H Şahin, S Cahangirov, M Topsakal et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Physical Review B, 80, 155453(2009).

    [48] H L Zhuang, A K Singh, R G Hennig. Computational discovery of single-layer III-V materials. Physical Review B, 87, 165415(2013).

    [49] Y-S Kim, K Hummer, G Kresse. Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals. Physical Review B, 80, 035203(2009).

    [50] S Ahmed, A Jalil, S Z Ilyas et al. The first-principles prediction of two-dimensional indium-arsenide bilayers. Materials Science in Semiconductor Processing, 134, 106041(2021).

    [51] X-F Liu, Z-J Luo, X Zhou et al. Structural, mechanical, and electronic properties of 25 kinds of III-V binary monolayers: a computational study with first-principles calculation. Chinese Physics B, 28, 086105(2019).

    [52] S Yang, D Dardzinski, A Hwang et al. First-principles feasibility assessment of a topological insulator at the InAs/GaSb interface. Physical Review Materials, 5, 084204(2021).

    [53] M Y Amusia, A Z Msezane, V R Shaginyan. Density functional theory versus the Hartree–Fock method: comparative assessment. Physica Scripta, 68, C133-C40(2003).

    [54] Y Hinuma, H Hayashi, Y Kumagai et al. Comparison of approximations in density functional theory calculations: energetics and structure of binary oxides. Physical Review B, 96, 094102(2017).

    [55] A Tkatchenko, L Romaner, O T Hofmann et al. Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bulletin, 35, 435-442(2011).

    [56] J Klimes, A Michaelides. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. Journal of Chemical Physics, 137, 120901(2012).

    [57] P A Khomyakov, G Giovannetti, P C Rusu et al. First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B, 79, 195425(2009).

    [58] M Topsakal, E Aktürk, S Ciraci. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Physical Review B, 79, 115442(2009).

    [59] C O Girit, J C Meyer, R Erni et al. Graphene at the edge: stability and dynamics. Science, 323, 1705-1708(2009).

    [60] K Nakada, A Ishii. Migration of adatom adsorption on graphene using DFT calculation. Solid State Communications, 151, 13-16(2011).

    [61] C-J Tong, H Zhang, Y-N Zhang et al. New manifold two-dimensional single-layer structures of zinc-blende compounds. Journal of Materials Chemistry A, 2, 17971-17978(2014).

    [62] T Suzuki. Theoretical discovery of stable structures of group III-V monolayers: the materials for semiconductor devices. Applied Physics Letters, 107, 213105(2015).

    [63] M C Lucking, W Xie, D H Choe et al. Traditional semiconductors in the two-dimensional limit. Physical Review Letters, 120, 086101(2018).

    [64] Y Li, X Ma, H Bao et al. Carrier-driven magnetic and topological phase transitions in two-dimensional III-V semiconductors. Nano Research, 16, 3443-3450(2023).

    [65] T Akiyma, Y Hasegawa, K Nakamura et al. Realization of honeycomb structures in octet A N B8-N binary compounds under two-dimensional limit. Applied Physics Express, 12, 125501(2019).

    [66] S S Lin. Light-emitting two-dimensional ultrathin silicon carbide. Journal of Physical Chemistry C, 116, 3951-3955(2012).

    [67] L Qin, Z H Zhang, Z Jiang et al. Realization of AlSb in the double-layer honeycomb structure: a robust class of two-dimensional material. ACS Nano, 15, 8184-8191(2021).

    [68] A M Munshi, D L Dheeraj, V T Fauske et al. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth. Nano Letters, 12, 4570-4576(2012).

    [69] Y J Hong, J W Yang, W H Lee et al. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Advanced Materials, 25, 6847-6853(2013).

    [70] X Liu, F Chen, W Guo. Ionic contribution to van der Waals interaction of polar compounds. Physical Review B, 105, 125411(2022).

    [71] C Yelgel, G P Srivastava, R H Miwa. Ab initio investigation of the electronic properties of graphene on InAs(111)A. Journal of Physics-Condensed Matter, 24, 485004(2012).

    [72] A K Lu, M Houssa, I P Radu et al. Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures: a first-principles study. ACS Applied Materials & Interfaces, 9, 7725-7734(2017).

    [73] Y Liu, A Luchini, S Marti-Sanchez et al. Coherent epitaxial semiconductor-ferromagnetic insulator InAs/EuS interfaces: band alignment and magnetic structure. ACS Applied Materials & Interfaces, 12, 8780-8787(2020).

    [74] M Dion, H Rydberg, E Schroder et al. Van der Waals density functional for general geometries. Physical Review Letters, 92, 246401(2004).

    [75] K Lee, É D Murray, L Kong et al. Higher-accuracy van der Waals density functional. Physical Review B, 82, 081101(2010).

    [76] R Hu, W Lei, H Yuan et al. High-throughput prediction of the band gaps of van der Waals heterostructures via machine learning. Nanomaterials, 12, 2301(2022).

    Tian-Tian CHENG, Kun ZHANG, Man LUO, Yu-Xin MENG, Yuan-Ze ZU, Yi-Jin WANG, Peng WANG, Chen-Hui YU. Research progress on first-principles calculations of interfacial charge transfer characteristics in InAs-based van der Waals heterojunctions[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 666
    Download Citation