• Acta Optica Sinica
  • Vol. 42, Issue 8, 0800002 (2022)
Fan Li1、2, Le Kang1、2、*, Fugui Yang1, Chunxia Yao1, Peiping Zhu1, Ming Li1, and Weifan Sheng1
Author Affiliations
  • 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China
  • show less
    DOI: 10.3788/AOS202242.0800002 Cite this Article Set citation alerts
    Fan Li, Le Kang, Fugui Yang, Chunxia Yao, Peiping Zhu, Ming Li, Weifan Sheng. Present Research Status of X-Ray Near-Field Speckle Based Wavefront Metrology[J]. Acta Optica Sinica, 2022, 42(8): 0800002 Copy Citation Text show less
    References

    [1] Eriksson M, Quitmann C. Diffraction-limited storage rings: a window to the science of tomorrow[J]. Journal of Synchrotron Radiation, 21, 837-842(2014).

    [2] Huang X B. Potential performance limit of storage rings. [C]∥Proceedings of the 8th International Particle Accelerator Conference, May 14-19, 2017, Copenhagen, Denmark. [S.l.: s.n.], 2836-2839(2017).

    [3] Tavares P F, Leemann S C, Sjöström M et al. The MAX IV storage ring project[J]. Journal of Synchrotron Radiation, 21, 862-877(2014).

    [4] Liu L, Milas N. Mukai A H C, et al. The sirius project[J]. Journal of Synchrotron Radiation, 21, 904-911(2014).

    [5] Farvacque L, Carmignani N, Chavanne J et al. A low-emittance lattice for the ESRF. [C]∥Proceedings of the 4th International Particle Accelerator Conference, May 12-17, 2013, Shanghai, China. [S.l.: s.n.], 79-81(2013).

    [6] Borland M, Sun Y. Lindberg S R R, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets. [C]∥Proceedings of the North American Particle Accelerator Conference, October 9-14, 2016, Chicago, IL, USA. [S.l.: s.n.], 877-880(2016).

    [7] Jiao Y, Xu G, Cui X H et al. The HEPS project[J]. Journal of Synchrotron Radiation, 25, 1611-1618(2018).

    [8] Mimura H, Handa S, Kimura T et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 6, 122-125(2010).

    [9] Seaberg M H, Aquila A, Liang M N et al. Nanofocus characterization at the coherent X-ray imaging instrument using 2D single grating interferometry[J]. Proceedings of SPIE, 11038, 110380L(2019).

    [10] Meng X Y, Guo C L, Wang Y et al. Research on partially coherent light propagation in synchrotron beamlines[J]. Acta Optica Sinica, 33, 0734001(2013).

    [11] Salditt T, Egner A, Luke D R. Nanoscale photonic imaging[M]. Cham: Springer(2018).

    [12] Attwood D, Sakdinawat A[M]. X-rays and extreme ultraviolet radiation: principles and applications(2016).

    [13] Soufli R, Pivovaroff M J, Baker S L et al. Development, characterization and experimental performance of X-ray optics for the LCLS free-electron laser[J]. Proceedings of SPIE, 7077, 707716(2008).

    [14] Seiboth F, Schropp A, Scholz M et al. Perfect X-ray focusing via fitting corrective glasses to aberrated optics[J]. Nature Communications, 8, 14623(2017).

    [15] Roth T, Alianelli L, Lengeler D et al. Materials for X-ray refractive lenses minimizing wavefront distortions[J]. MRS Bulletin, 42, 430-436(2017).

    [16] Matsuyama S, Nakamori H, Goto T et al. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors[J]. Scientific Reports, 6, 24801(2016).

    [17] Alcock S G. Sawhney K J S, Scott S, et al. The diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability[J]. Nuclear Instruments and Methods in Physics Research Section A, 616, 224-228(2010).

    [18] Siewert F, Buchheim J, Höft T et al. High angular resolution slope measuring deflectometry for the characterization of ultra-precise reflective X-ray optics[J]. Measurement Science and Technology, 23, 074015(2012).

    [19] Idir M, Kaznatcheev K, Dovillaire G et al. A 2 D high accuracy slope measuring system based on a stitching Shack Hartmann optical head[J]. Optics Express, 22, 2770-2781(2014).

    [20] Rommeveaux A V, Lantelme B, Barrett R. ESRF metrology laboratory: overview of instrumentation, measurement techniques, and data analysis[J]. Proceedings of SPIE, 7801, 780107(2010).

    [21] Han Y N, Hu X Q, Dong B. Iterative extrapolation method to expand dynamic range of Shack-Hartmann wavefront sensors[J]. Acta Optica Sinica, 40, 1611004(2020).

    [22] Gaudin J, Keitel B, Jurgilaitis A et al. Time-resolved investigation of nanometer scale deformations induced by a high flux X-ray beam[J]. Optics Express, 19, 15516-15524(2011).

    [23] Bonse U, Hart M. An X-ray interferometer[J]. Applied Physics Letters, 6, 155-156(1965).

    [24] Sutter J, Alcock S, Sawhney K. In situ beamline analysis and correction of active optics[J]. Journal of Synchrotron Radiation, 19, 960-968(2012).

    [25] Lane R G, Tallon M. Wave-front reconstruction using a Shack-Hartmann sensor[J]. Applied Optics, 31, 6902-6908(1992).

    [26] Olivo A, Speller R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources[J]. Applied Physics Letters, 91, 074106(2007).

    [27] David C, Nöhammer B, Solak H H et al. Differential X-ray phase contrast imaging using a shearing interferometer[J]. Applied Physics Letters, 81, 3287-3289(2002).

    [28] Cloetens P, Ludwig W, Baruchel J et al. Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays[J]. Applied Physics Letters, 75, 2912-2914(1999).

    [29] Gureyev T E, Mayo S, Wilkins S W et al. Quantitative in-line phase-contrast imaging with multienergy X rays[J]. Physical Review Letters, 86, 5827-5830(2001).

    [30] Momose A, Takeda T, Itai Y et al. Phase-contrast X-ray computed tomography for observing biological soft tissues[J]. Nature Medicine, 2, 473-475(1996).

    [31] Berujon S. At-wavelength metrology of hard X-ray synchrotron beams and optics method developments and applications[D]. Grenoble: Université de Grenoble(2013).

    [32] Goodman J W. Speckle phenomena in optics: theory and applications[M]. Bellingham: SPIE(2006).

    [33] Sutton M. A review of X-ray intensity fluctuation spectroscopy[J]. Comptes Rendus Physique, 9, 657-667(2008).

    [34] Berujon S, Cojocaru R, Piault P et al. X-ray optics and beam characterization using random modulation: experiments[J]. Journal of Synchrotron Radiation, 27, 293-304(2020).

    [35] Wang H C, Zhou T H, Kashyap Y et al. Speckle-based at-wavelength metrology of X-ray optics at Diamond Light Source[J]. Proceedings of SPIE, 10388, 103880I(2017).

    [36] Berujon S, Ziegler E, Cojocaru R et al. Development of a hard X-ray wavefront sensor for the EuXFEL[J]. Proceedings of SPIE, 10237, 102370K(2017).

    [37] Xue L, Li Z, Zhou T H et al. Absolute metrology method of the X-ray mirror with speckle scanning technique[J]. Applied Optics, 58, 8658-8664(2019).

    [38] Xue L, Luo H X, Diao Q S et al. Quantitative X-ray channel-cut crystal diffraction wavefront metrology using the speckle scanning technique[J]. Sensors, 20, 6660(2020).

    [39] Zanette I, Zhou T H, Burvall A et al. Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source[J]. Physical Review Letters, 112, 253903(2014).

    [40] Berto P, Rigneault H, Guillon M. Wavefront sensing with a thin diffuser[J]. Optics Letters, 42, 5117-5120(2017).

    [41] Wang H C, Kashyap Y, Cai B et al. High energy X-ray phase and dark-field imaging using a random absorption mask[J]. Scientific Reports, 6, 30581(2016).

    [42] Berujon S, Ziegler E, Cerbino R et al. Two-dimensional X-ray beam phase sensing[J]. Physical Review Letters, 108, 158102(2012).

    [43] Berujon S, Wang H C, Sawhney K. X-ray multimodal imaging using a random-phase object[J]. Physical Review A, 86, 063813(2012).

    [44] Morgan K S, Paganin D M. Siu K K W. X-ray phase imaging with a paper analyzer[J]. Applied Physics Letters, 100, 124102(2012).

    [45] Berujon S, Wang H C, Pape I et al. X-ray phase microscopy using the speckle tracking technique[J]. Applied Physics Letters, 102, 154105(2013).

    [46] Wang H C, Berujon S, Herzen J et al. X-ray phase contrast tomography by tracking near field speckle[J]. Scientific Reports, 5, 8762(2015).

    [47] Zhou T H, Zanette I, Zdora M C et al. Speckle-based X-ray phase-contrast imaging with a laboratory source and the scanning technique[J]. Optics Letters, 40, 2822-2825(2015).

    [48] Berujon S, Ziegler E. Near-field speckle-scanning-based X-ray imaging[J]. Physical Review A, 92, 013837(2015).

    [49] Zanette I, Zdora M C, Zhou T H et al. X-ray microtomography using correlation of near-field speckles for material characterization[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 12569-12573(2015).

    [50] Berujon S, Ziegler E. X-ray multimodal tomography using speckle-vector tracking[J]. Physical Review Applied, 5, 044014(2016).

    [51] Zdora M C, Thibault P, Zhou T H et al. X-ray phase-contrast imaging and metrology through unified modulated pattern analysis[J]. Physical Review Letters, 118, 203903(2017).

    [52] Berujon S, Ziegler E. Near-field speckle-scanning-based X-ray tomography[J]. Physical Review A, 95, 063822(2017).

    [53] Zdora M C, Zanette I, Walker T et al. X-ray phase imaging with the unified modulated pattern analysis of near-field speckles at a laboratory source[J]. Applied Optics, 59, 2270-2275(2020).

    [54] Zdora M C, Thibault P, Kuo W et al. X-ray phase tomography with near-field speckles for three-dimensional virtual histology[J]. Optica, 7, 1221-1227(2020).

    [55] Wang F X, Wang Y D, Wei G X et al. Speckle-tracking X-ray phase-contrast imaging for samples with obvious edge-enhancement effect[J]. Applied Physics Letters, 111, 174101(2017).

    [56] Paganin D M, Labriet H, Brun E et al. Single-image geometric-flow X-ray speckle tracking[J]. Physical Review A, 98, 053813(2018).

    [57] Wang H C, Berujon S, Sutter J et al. At-wavelength metrology of X-ray optics at diamond light source[J]. Proceedings of SPIE, 9206, 920608(2014).

    [58] Wang H C, Moriconi S, Sawhney K. Nano-precision metrology of X-ray mirrors with laser speckle angular measurement[J]. Light: Science & Applications, 10, 195(2021).

    [59] Berujon S, Cojocaru R, Piault P et al. X-ray optics and beam characterization using random modulation: theory[J]. Journal of Synchrotron Radiation, 27, 284-292(2020).

    [60] Berujon S, Ziegler E, Cloetens P. X-ray pulse wavefront metrology using speckle tracking[J]. Journal of Synchrotron Radiation, 22, 886-894(2015).

    [61] Zdora M C, Zanette I, Zhou T et al. At-wavelength optics characterisation via X-ray speckle- and grating-based unified modulated pattern analysis[J]. Optics Express, 26, 4989-5004(2018).

    [62] Morgan A J, Quiney H M, Bajt S et al. Ptychographic X-ray speckle tracking[J]. Journal of Applied Crystallography, 53, 760-780(2020).

    [63] Morgan A J, Murray K T, Prasciolu M et al. Ptychographic X-ray speckle tracking with multi-layer laue lens systems[J]. Journal of Applied Crystallography, 53, 927-936(2020).

    [64] Morgan A J, Murray K T, Quiney H M et al. Speckle-tracking: a software suite for ptychographic X-ray speckle tracking[J]. Journal of Applied Crystallography, 53, 1603-1612(2020).

    [65] Qiao Z, Shi X B, Assoufid L. Single-shot speckle tracking method based on wavelet transform and multi-resolution analysis[J]. Proceedings of SPIE, 11492, 114920O(2020).

    [66] Tian N X, Jiang H, Li A G et al. Influence of diffuser grain size on the speckle tracking technique[J]. Journal of Synchrotron Radiation, 27, 146-157(2020).

    [67] Tian N X, Jiang H, Li A G et al. High-precision speckle-tracking X-ray imaging with adaptive subset size choices[J]. Scientific Reports, 10, 14238(2020).

    [68] Cerbino R. Correlations of light in the deep fresnel region: an extended Van Cittert and Zernike theorem[J]. Physical Review A, 75, 053815(2007).

    [69] Bing P. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]. Measurement Science and Technology, 29, 082001(2018).

    [70] Pan B, Qian K M, Xie H M et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 20, 062001(2009).

    [71] Pan B, Xie H M, Wang Z Y et al. Study on subset size selection in digital image correlation for speckle patterns[J]. Optics Express, 16, 7037-7048(2008).

    [72] Alexander T L, Harvey J E, Weeks A R. Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory[J]. Applied Optics, 33, 8240-8250(1994).

    [73] Piederrière Y, le Meur J, Cariou J et al. Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation[J]. Optics Express, 12, 4596-4601(2004).

    [74] Lin H, Yu P. Speckle mechanism in holographic optical imaging[J]. Optics Express, 15, 16322-16327(2007).

    [75] Pan X C, Liu C, Tao H et al. Phase imaging based on Ptychography and progress on related key techniques[J]. Acta Optica Sinica, 40, 0111010(2020).

    [76] Kashyap Y, Wang H C, Sawhney K. Two-dimensional transverse coherence measurement of hard-X-ray beams using near-field speckle[J]. Physical Review A, 92, 033842(2015).

    [77] Berujon S, Wang H C, Alcock S et al. At-wavelength metrology of hard X-ray mirror using near field speckle[J]. Optics Express, 22, 6438-6446(2014).

    [78] Wang H C, Kashyap Y, Laundy D et al. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique[J]. Journal of Synchrotron Radiation, 22, 925-929(2015).

    [79] Tyson R K[M]. Principles of adaptive optics(2010).

    Fan Li, Le Kang, Fugui Yang, Chunxia Yao, Peiping Zhu, Ming Li, Weifan Sheng. Present Research Status of X-Ray Near-Field Speckle Based Wavefront Metrology[J]. Acta Optica Sinica, 2022, 42(8): 0800002
    Download Citation