• Photonics Research
  • Vol. 10, Issue 10, 2317 (2022)
Tongling Wang1、†, Tengteng Li2、†, Haiyun Yao3, Yuying Lu4, Xin Yan3, Maoyong Cao1、6、*, Lanju Liang3、7、*, Maosheng Yang5、8、*, and Jianquan Yao2
Author Affiliations
  • 1School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
  • 2State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
  • 3School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
  • 4Precision Optical Manufacturing and Testing Centre, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237000, China
  • 6e-mail:
  • 7e-mail:
  • 8e-mail:
  • show less
    DOI: 10.1364/PRJ.461787 Cite this Article Set citation alerts
    Tongling Wang, Tengteng Li, Haiyun Yao, Yuying Lu, Xin Yan, Maoyong Cao, Lanju Liang, Maosheng Yang, Jianquan Yao. High-sensitivity modulation of electromagnetically induced transparency analog in a THz asymmetric metasurface integrating perovskite and graphene[J]. Photonics Research, 2022, 10(10): 2317 Copy Citation Text show less
    References

    [1] L. L. Huang, X. Z. Chen, H. Muhlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [2] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [3] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [4] S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B, 80, 153103(2009).

    [5] X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, W. Zhang. Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J. Sel. Top. Quantum Electron., 19, 8400707(2012).

    [6] Y. M. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [7] M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, M. Zhang, T. Wang, J. Yao. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells. Opt. Express, 27, 19520-19529(2019).

    [8] M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, R. Singh. Tailoring the slow light behavior in terahertz metasurfaces. Appl. Phys. Lett., 106, 181101(2015).

    [9] Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. Jiang, H. Chen. Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials. Appl. Phys. Lett., 103, 091904(2013).

    [10] B. Ji, Y. Han, S. Liu, F. Tao, G. Zhang, Z. Fu, C. Li. Several key technologies for 6G: challenges and opportunities. IEEE Commun. Stand. Mag., 5, 44-51(2021).

    [11] R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, G. Kumar. Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials. J. Opt., 22, 035105(2020).

    [12] J. Zhang, N. Mu, L. Liu, J. Xie, H. Feng, J. Yao, T. Chen, W. Zhu. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron., 185, 113241(2021).

    [13] K. M. Devi, A. K. Sarma, D. R. Chowdhury, G. Kumar. Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial. Opt. Express, 25, 10484-10493(2017).

    [14] K. M. Devi, D. R. Chowdhury, G. Kumar, A. K. Sarma. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J. Appl. Phys., 124, 063106(2018).

    [15] X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, J. Jiang. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial. Carbon, 123, 668-675(2017).

    [16] R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, T. A. Searles. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys. Rev. B, 97, 155403(2018).

    [17] W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, R. Singh. Ultrafast all-optical switching of germanium-based flexible metaphotonic devices. Adv. Mater., 30, 1705331(2018).

    [18] T. Wang, M. Cao, Y. Zhang, H. Zhang. Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies. Opt. Mater. Express, 9, 1562-1576(2019).

    [19] K. M. Devi, M. Islam, D. R. Chowdhury, A. K. Sarma, G. Kumar. Plasmon-induced transparency in graphene-based terahertz metamaterials. Europhys. Lett., 120, 27005(2018).

    [20] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546(2014).

    [21] W. Tian, H. Zhou, L. Li. Hybrid organic–inorganic perovskite photodetectors. Small, 13, 1702107(2017).

    [22] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).

    [23] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, B. Wang. Recent progress in organometal halide perovskite photodetectors. Org. Electron., 52, 172-183(2018).

    [24] A. Chanana, X. Liu, C. Zhang, Z. V. Vardeny, A. Nahata. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv., 4, 7353(2018).

    [25] A. Kumar, A. Solanki, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, R. Singh. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv., 6, 8821(2020).

    [26] V. I. Korolev, A. P. Pushkarev, P. A. Obraztsov, A. N. Tsypkin, A. A. Zakhidov, S. V. Makarov. Enhanced terahertz emission from imprinted halide perovskite nanostructures. Nanophotonics, 9, 187-194(2020).

    [27] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. A roadmap for graphene. Nature, 490, 192-200(2012).

    [28] S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [29] M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater., 29, 1605881(2017).

    [30] T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, S. Zhang. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800-1807(2018).

    [31] C. Liu, P. Liu, C. Yang, Y. Lin, H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 142, 354-362(2019).

    [32] Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, W. Zhang. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol., 5, 1900840(2020).

    [33] R. Singh, I. A. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett., 99, 201107(2011).

    [34] M. Yang, T. Li, X. Yan, L. Liang, H. Yao, Z. Sun, J. Li, J. Li, D. Wei, M. Wang, Y. Ye, X. Song, H. Zhang, J. Yao. Dual-stimulus control for ultra-wideband and multidimensional modulation in terahertz metasurfaces comprising graphene and metal halide perovskites. ACS Appl. Mater. Interfaces, 14, 2155-2165(2021).

    [35] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [36] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [37] W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, J. Xu. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system. Opt. Express, 24, 5784-5793(2016).

    [38] J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, H. Zhang. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci. Rep., 4, 6128(2014).

    [39] S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    Tongling Wang, Tengteng Li, Haiyun Yao, Yuying Lu, Xin Yan, Maoyong Cao, Lanju Liang, Maosheng Yang, Jianquan Yao. High-sensitivity modulation of electromagnetically induced transparency analog in a THz asymmetric metasurface integrating perovskite and graphene[J]. Photonics Research, 2022, 10(10): 2317
    Download Citation