• Acta Optica Sinica
  • Vol. 41, Issue 1, 0131001 (2021)
Zhanshan Wang*, Qiushi Huang, Zhong Zhang, Shengzhen Yi, Wenbin Li, Zhengxiang Shen, Runze Qi, and Jun Yu
Author Affiliations
  • Key Laboratory of Advanced Micro-Structured Materials, Ministry of Education, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.3788/AOS202141.0131001 Cite this Article Set citation alerts
    Zhanshan Wang, Qiushi Huang, Zhong Zhang, Shengzhen Yi, Wenbin Li, Zhengxiang Shen, Runze Qi, Jun Yu. Extreme Ultraviolet, X-Ray and Neutron Thin Film Optical Components and Systems[J]. Acta Optica Sinica, 2021, 41(1): 0131001 Copy Citation Text show less
    References

    [1] Attwood D, Sakdinawat A[M]. X-rays and extreme ultraviolet radiation(2016).

    [2] Sakdinawat A, Attwood D. Nanoscale X-ray imaging[J]. Nature Photonics, 4, 840-848(2010).

    [3] Bajt S, Prasciolu M, Fleckenstein H et al. X-ray focusing with efficient high-NA multilayer Laue lenses[J]. Light: Science & Applications, 7, 17162(2018).

    [4] Hardacre C, Beale A M, Gibson E K et al. Synchrotron radiation and catalytic science[J]. Synchrotron Radiation News, 33, 10-14(2020).

    [5] Tao Z S, Chen C, Szilvási T et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids[J]. Science, 353, 62-67(2016).

    [6] Yabashi M, Tono K, Mimura H et al. Optics for coherent X-ray applications[J]. Journal of Synchrotron Radiation, 21, 976-985(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=ed8a530bce5c9340ec219b7fc8598ef3

    [7] Wischmeier L, Graeupner P, Kuerz P et al. High-NA EUV lithography optics becomes reality[J]. Proceedings of SPIE, 11323, 1132308(2020). http://www.researchgate.net/publication/340108892_High-NA_EUV_lithography_optics_becomes_reality

    [8] Cocco D, Spiga D. Wavefront preserving optics for diffraction-limited storage rings and free-electron lasers[J]. Proceedings of SPIE, 11111, 111110G(2019). http://www.researchgate.net/publication/335769713_Wavefront_preserving_optics_for_diffraction-limited_storage_rings_and_free-electron_lasers

    [9] Yamauchi K, Mimura H, Inagaki K et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Review of Scientific Instruments, 73, 4028-4033(2002). http://scitation.aip.org/content/aip/journal/rsi/73/11/10.1063/1.1510573

    [10] Weiser M. Ion beam figuring for lithography optics[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 1390-1393(2009). http://www.sciencedirect.com/science/article/pii/S0168583X09000949

    [11] Matsuyama S, Inoue T, Yamada J et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors[J]. Scientific Reports, 8, 17440(2018). http://www.ncbi.nlm.nih.gov/pubmed/30487583

    [12] Martin I F, Vannoni M, Sinn H. Metrology and quality assurance for European XFEL long flat mirrors installation[J]. Proceedings of SPIE, 10330, 1033007(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2635521

    [13] Chian L, Lahsen A, Conley R et al. Profile coating and its application for Kirkpatrick--Baez mirrors[J]. Optical Engineering, 42, 3622-3628(2003). http://spie.org/x648.xml?product_id=562888

    [14] Shi Y N, Huang Q S, Qi R Z et al. Theoretical and experimental study of particle distribution from magnetron sputtering with masks for accurate thickness profile control[J]. Coatings, 10, 357(2020). http://www.researchgate.net/publication/340458964_Theoretical_and_Experimental_Study_of_Particle_Distribution_from_Magnetron_Sputtering_with_Masks_for_Accurate_Thickness_Profile_Control

    [15] Barty A, Soufli R. McCarville T, et al. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser[J]. Optics Express, 17, 15508-15519(2009).

    [16] Yingna S, Runze Q, Yufei F et al. Microstructure, roughness, and stress properties of silicon coatings for shape correction of Kirkpatrick--Baez mirrors[J]. Optical Engineering, 58, 015103(2019). http://proceedings.spiedigitallibrary.org/journals/OE/volume-58/issue-01/015103/Microstructure-roughness-and-stress-properties-of-silicon-coatings-for-shape/10.1117/1.OE.58.1.015103.full

    [17] Xudong X, Zhengxiang S, Guangde T et al. Sparse subaperture stitching method for measuring large aperture planar optics[J]. Optical Engineering, 55, 024103(2016). http://proceedings.spiedigitallibrary.org/journals/OE/volume-55/issue-02/024103/Sparse-subaperture-stitching-method-for-measuring-large-aperture-planar-optics/10.1117/1.OE.55.2.024103.full

    [18] Xu X D, Huang Q S, Huang Q S et al. Accuracy analysis and improvement of an algorithm-based stitching interferometry method for curved mirrors with large radii of curvature[J]. OSA Continuum, 2, 2783-2794(2019). http://www.researchgate.net/publication/335846569_Accuracy_analysis_and_improvement_of_an_algorithm-based_stitching_interferometry_method_for_curved_mirrors_with_large_radii_of_curvature

    [19] Chen J Q, Huang Q S, Qi R Z et al. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors[J]. Nuclear Science and Techniques, 30, 1-6(2019).

    [20] Qi R Z, Pan L Y, Feng Y F et al. Evolution of chemical, structural, and mechanical properties of titanium nitride thin films deposited under different nitrogen partial pressure[J]. Results in Physics, 19, 103416(2020). http://www.sciencedirect.com/science/article/pii/S2211379720318830

    [21] Wu J L, Qi R Z, Huang Q S et al[J]. Stress, roughness and reflectivity properties of sputter-deposited B4C coatings for X-ray mirrors Chinese Physics Letters, 2019, 120701.

    [22] Yang Y, Qiushi H, Igor V K et al. Comparative study of single-layer, bilayer, and trilayer mirrors with enhanced X-ray reflectance in 0.5- to 8-keV energy region[J]. Journal of Astronomical Telescopes Instruments and Systems, 6, 044001(2020). http://proceedings.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-6/issue-04/044001/Comparative-study-of-single-layer-bilayer-and-trilayer-mirrors-with/10.1117/1.JATIS.6.4.044001.full

    [23] Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers[J]. Journal of Applied Physics, 90, 1017-1025(2001). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5153768

    [24] Kuznetsov D, Yakshin A, Sturm M et al. High-reflectance La/B-based multilayer mirror for 6.x-nm wavelength[J]. Proceedings of SPIE, 9588, 958806(2015).

    [25] Ghafoor N, Eriksson F, Aquila A et al. Impact of B4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors[J]. Optics Express, 25, 18274-18287(2017).

    [26] Huang Q S, Fei J N, Liu Y et al. High reflectance Cr/V multilayer with B4C barrier layer for water window wavelength region[J]. Optics Letters, 41, 701-704(2016). http://www.ncbi.nlm.nih.gov/pubmed/26872167

    [27] Huang Q, Yi Q, Cao Z et al. High reflectance nanoscale V/Sc multilayer for soft X-ray water window region[J]. Scientific Reports, 7, 12929(2017).

    [28] Xu D C, Huang Q S, Wang Y W et al. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors[J]. Optics Express, 23, 33018-33026(2015).

    [29] Ni H J, Huang Q S, Liu G C et al. Comparative study of Pd/B4C X-ray multilayer mirrors fabricated by magnetron sputtering with Kr and Ar gas[J]. Materials, 13, 4504(2020). http://www.researchgate.net/publication/346218635_Comparative_Study_of_PdB4C_X-ray_Multilayer_Mirrors_Fabricated_by_Magnetron_Sputtering_with_Kr_and_Ar_Gas/download

    [30] Feigl T, Perske M, Pauer H et al. Optical performance of LPP multilayer collector mirrors[J]. Proceedings of SPIE, 8322, 832217(2012).

    [31] Wang Z S, Zhu J T, Mu B Z et al. Applications of multilayer optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623, 786-790(2010).

    [32] Zhang Z, Qi R Z, Yao Y Y et al. Improving thickness uniformity of Mo/Si multilayers on curved spherical substrates by a masking technique[J]. Coatings, 9, 851(2019). http://www.researchgate.net/publication/339630859_Improving_Thickness_Uniformity_of_MoSi_Multilayers_on_Curved_Spherical_Substrates_by_a_Masking_Technique

    [33] Störmer M, Siewert F, Horstmann C et al. Coatings for FEL optics: preparation and characterization of B4C and Pt[J]. Journal of Synchrotron Radiation, 25, 116-122(2018). http://europepmc.org/articles/PMC5741127/

    [34] Wang C Q, Wang Z S, Zhang Z et al. Calculation and verification of linear target deposition distribution[J]. Proceedings of SPIE, 11617, 116171M(2020). http://www.researchgate.net/publication/347373626_Calculation_and_verification_of_linear_target_deposition_distribution

    [35] Ni H J, Huang Q S, Shi Y N et al. Development of large-size multilayer mirrors with a linear deposition facility for X-ray applications[J]. Optical Engineering, 58, 104105(2019). http://www.researchgate.net/publication/336569268_Development_of_large-size_multilayer_mirrors_with_a_linear_deposition_facility_for_x-ray_applications

    [36] Tu Y C, Song Z Q, Huang Q S et al. Fabrication of laterally graded periodic Mo/Si multilayer using magnetron sputtering technology[J]. High Power Laser and Particle Beams, 23, 2419-2422(2011).

    [37] Huang Q S. Medvedev V, van de Kruijs R, et al. Spectral tailoring of nanoscale EUV and soft X-ray multilayer optics[J]. Applied Physics Reviews, 4, 011104(2017).

    [38] Yakshin A E, Kozhevnikov I V, Zoethout E et al. Properties of broadband depth-graded multilayer mirrors for EUV optical systems[J]. Optics Express, 18, 6957-6971(2010).

    [39] Kozhevnikov I V, Bukreeva I N, Ziegler E. Design of X-ray supermirrors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 460, 424-443(2001). http://www.sciencedirect.com/science/article/pii/S0168900200010792

    [40] Wang Z S, Michette A G. Optimization of depth-graded multilayer designs for EUV and X-ray optics[J]. Proceedings of SPIE, 4145, 243-253(2001). http://spie.org/Publications/Proceedings/Paper/10.1117/12.411644

    [41] Wang Y W, Huang Q S, Yi Q et al. Design of Pd/B4C aperiodic multilayers for 8-12 nm region with flat reflectivity profile[J]. Chinese Optics Letters, 14, 073101(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160620000065TpWsZv

    [42] Wang Z S, Wang H C, Zhu J T et al. Extreme ultraviolet broadband Mo∕Y multilayer analyzers[J]. Applied Physics Letters, 89, 241120(2006). http://dx.doi.org/10.1063/1.2405874

    [43] Erko A, Idir M, Krist T et al. Modern developments in X-ray and neutron optics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg(2008).

    [44] Senthil Kumar M, Böni P, electrical resistance[J]. stress, embrittlement in reactively sputtered Ni/Ti multilayers, supermirrors. Physica B: Condensed Matter, 385/386, 1265-1267(2006).

    [45] Maruyama R, Yamazaki D, Ebisawa T et al. Development of high-reflectivity neutron supermirrors using an ion beam sputtering technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 68-70(2009). http://www.sciencedirect.com/science/article/pii/S0168900208016616

    [46] Jiao H F, Yu C Y, Zhang Z et al. Effect of carbon on microstructure and interfaces of NiC/Ti multilayers for neutron applications[J]. Vacuum, 155, 49-54(2018).

    [47] Guggenmos A, Cui Y, Heinrich S et al. Attosecond pulse shaping by multilayer mirrors[J]. Applied Sciences, 8, 2503(2018).

    [48] Bourassin-Bouchet C, de Rossi S, Wang J et al. Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors[J]. New Journal of Physics, 14, 023040(2012).

    [49] Chen R, Wang F L, Wang A Z. Design of chirped Mo/Si multilayer mirror in the extreme ultraviolet region[J]. Chinese Optics Letters, 6, 310-312(2008). http://www.opticsjournal.net/Articles/Abstract?aid=OJ0804210003200GcIfL

    [50] Yang X W, Kozhevnikov I V, Huang Q S et al. Unified analytical theory of single-order soft X-ray multilayer gratings[J]. Journal of the Optical Society of America B, 32, 506-522(2015).

    [51] Yang X W, Kozhevnikov I V, Huang Q S et al. Analytic theory of alternate multilayer gratings operating in single-order regime[J]. Optics Express, 25, 15987-16001(2017).

    [52] Huang Q S, Kozhevnikov I V, Sokolov A et al. Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region[J]. Optics Express, 28, 821-845(2020). http://www.researchgate.net/publication/338413647_Theoretical_analysis_and_optimization_of_highly_efficient_multilayer-coated_blazed_gratings_with_high_fix-focus_constant_for_the_tender_X-ray_region

    [53] Yang X, Wang H, Hand M et al. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range[J]. Journal of Synchrotron Radiation, 24, 168-174(2017). http://europepmc.org/articles/PMC5182023/

    [54] Sokolov A, Huang Q S, Senf F et al. Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region[J]. Optics Express, 27, 16833-16846(2019). http://www.researchgate.net/publication/333587274_Optimized_highly_efficient_multilayer-coated_blazed_gratings_for_the_tender_X-ray_region

    [55] Huang Q, Jia Q, Feng J et al. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy[J]. Nature Communications, 10, 2437(2019). http://www.nature.com/articles/s41467-019-10095-2

    [56] André J M, Benbalagh R, Barchewitz R et al. X-ray multilayer monochromator with enhanced performance[J]. Applied Optics, 41, 239-244(2002).

    [57] Kozhevnikov I V, van der Meer R, Bastiaens H M J et al. Analytic theory of soft X-ray diffraction by lamellar multilayer gratings[J]. Optics Express, 19, 9172-9184(2011).

    [58] van der Meer R, Kozhevnikov I, Krishnan B et al. Single-order operation of lamellar multilayer gratings in the soft X-ray spectral range[J]. AIP Advances, 3, 012103(2013). http://scitation.aip.org/content/aip/journal/adva/3/1/10.1063/1.4774297

    [59] Huang Q S, Feng J T, Li T Z et al. Narrowband lamellar multilayer grating with low contrast MoSi2/Si materials for the soft X-ray region[J]. Journal of Physics D: Applied Physics, 52, 195303(2019). http://iopscience.iop.org/article/10.1088/1361-6463/ab0873

    [60] Hau-Riege S P, London R A, Bionta R M et al. Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation[J]. Applied Physics Letters, 95, 111104(2009). http://scitation.aip.org/content/aip/journal/apl/95/11/10.1063/1.3216845

    [61] Hau-Riege S P, London R A, Graf A et al. Interaction of short X-ray pulses with low-Z X-ray optics materials at the LCLS free-electron laser[J]. Optics Express, 18, 23933-23938(2010).

    [62] Aquila A, Sobierajski R, Ozkan C et al. Fluence thresholds for grazing incidence hard X-ray mirrors[J]. Applied Physics Letters, 106, 241905(2015). http://scitation.aip.org/content/aip/journal/apl/106/24/10.1063/1.4922380

    [63] Koyama T, Yumoto H, Miura T et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser[J]. The Review of Scientific Instruments, 87, 051801(2016).

    [64] Makhotkin I A, Sobierajski R, Chalupský J et al. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold[J]. Journal of Synchrotron Radiation, 25, 77-84(2018). http://onlinelibrary.wiley.com/doi/10.1107/S1600577517017362

    [65] Zhang Z, Li W B, Huang Q S et al. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source[J]. Review of Scientific Instruments, 89, 103109(2018).

    [66] Gaudin J, Peyrusse O, Chalupský J et al. Amorphous to crystalline phase transition in carbon induced by intense femtosecond X-ray free-electron laser pulses[J]. Physical Review B, 86, 024103(2012).

    [67] Milov I, Makhotkin I A, Sobierajski R et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser[J]. Optics Express, 26, 19665-19685(2018).

    [68] Khorsand A R, Sobierajski R, Louis E et al. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure[J]. Optics Express, 18, 700-712(2010).

    [69] Li W, Zhang Z, Pan L et al. Table-top focused EUV optical system with high energy density and its application on EUV damage tests[J]. Proceeding of SPIE, 11035, 1103535(2019). http://www.researchgate.net/publication/332645433_Table-top_focused_EUV_optical_system_with_high_energy_density_and_its_application_on_EUV_damage_tests

    [70] Wang X, Huang Y, Mu B Z et al. 18.2 nm Schwarzschild microscope for diagnostics of hot electron transport[J]. Optik, 123, 947-949(2012). http://www.sciencedirect.com/science/article/pii/S0030402611003603

    [71] Chen S H, Wang X, Huang Q S et al. 13.5 nm Schwarzschild microscope with high magnification and high resolution[J]. Chinese Optics Letters, 15, 043401(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170222000037X1w4z6

    [72] Marshall F J, Bahr R E, Goncharov V N et al. A framed, 16-image Kirkpatrick--Baez X-ray microscope[J]. The Review of Scientific Instruments, 88, 093702(2017). http://www.ncbi.nlm.nih.gov/pubmed/28964245

    [73] Pickworth L A, Ayers J, Bell P et al. 87(11): 11E316(2016).

    [74] Yi S Z, Zhang Z, Huang Q S et al. Eight-channel Kirkpatrick--Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. The Review of Scientific Instruments, 87, 103501(2016). http://scitation.aip.org/content/aip/journal/rsi/87/10/10.1063/1.4963702

    [75] Yi S Z, Zhang Z, Huang Q S et al. Note: Tandem Kirkpatrick--Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics[J]. The Review of Scientific Instruments, 89, 036105(2018). http://europepmc.org/abstract/MED/29604742

    [76] Harrison F A, Craig W W, Christensen F E et al. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission[J]. The Astrophysical Journal, 770, 103(2013).

    [77] Basu-Zych A R, Hornschemeier A E, Haberl F et al. The next-generation X-ray galaxy survey with eROSITA[J]. Monthly Notices of the Royal Astronomical Society, 498, 1651-1667(2020). http://arxiv.org/abs/2008.01870?context=astro-ph

    [78] Cui W, Chen L B, Gao B et al. HUBS: hot universe baryon surveyor[J]. Journal of Low Temperature Physics, 199, 502-509(2020).

    [79] Yu J, Shen Z X, Sheng P F et al. Ray tracing method for the evaluation of grazing incidence X-ray telescopes described by spatially sampled surfaces[J]. Applied Optics, 57, B74-B82(2018). http://www.ncbi.nlm.nih.gov/pubmed/29521997

    [80] Wang Z S, Liao Y Y, Shen Z X et al. Development of imaging X-ray telescopes at Tongji University[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 5, 044010(2019). http://www.researchgate.net/publication/337800173_Development_of_imaging_x-ray_telescopes_at_Tongji_University

    [81] Shen Z X, Yu J, Liao Y Y et al. Development of X-ray focusing telescope by thin-glass slumping technology[J]. Proceedings of SPIE, 11548, 115480D(2020). http://www.researchgate.net/publication/346429895_Development_of_x-ray_focusing_telescope_by_thin-glass_slumping_technology

    [82] Shen Z, Yu J, Ma B et al. The research of nested grazing incidence X-ray telescope with high angular resolution[J]. Proceedings of SPIE, 11119, 111190X(2019). http://www.researchgate.net/publication/336356951_The_research_of_nested_grazing_incidence_x-ray_telescope_with_high_angular_resolution

    [83] Shen Z, Yu J, Liao Y et al. Development of X-ray focusing telescope for HUBS[J]. Proceedings of SPIE, 11444, 114442T(2020). http://www.researchgate.net/publication/347633788_Development_of_x-ray_focusing_telescope_for_HUBS

    [84] Wu H R, Yang Y, Hussey D S et al. Study of a nested neutron-focusing supermirror system for small-angle neutron scattering[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940, 380-386(2019). http://www.sciencedirect.com/science/article/pii/S016890021930899X

    [85] Yang Y, Qi R Z, Zhang Z et al. Ni-Ti supermirror coated onto a curved substrate for nested neutron-focusing optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 986, 164752(2021). http://www.sciencedirect.com/science/article/pii/s0168900220311499

    [86] Xing L, Liu P, Yang X W et al. Ultrathin transmission-type bent crystals for XFEL spectral diagnostic[J]. Proceedings of SPIE, 11617, 116171Y(2020).

    Zhanshan Wang, Qiushi Huang, Zhong Zhang, Shengzhen Yi, Wenbin Li, Zhengxiang Shen, Runze Qi, Jun Yu. Extreme Ultraviolet, X-Ray and Neutron Thin Film Optical Components and Systems[J]. Acta Optica Sinica, 2021, 41(1): 0131001
    Download Citation