• Journal of Semiconductors
  • Vol. 43, Issue 12, 122701 (2022)
Adnan Shariah* and Feda Mahasneh*
Author Affiliations
  • Department of Physics, Jordan University of Science and Technology, Irbid 22110, Jordan
  • show less
    DOI: 10.1088/1674-4926/43/12/122701 Cite this Article
    Adnan Shariah, Feda Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. Journal of Semiconductors, 2022, 43(12): 122701 Copy Citation Text show less
    References

    [1] Wakisaka K, Taguchi M, Sawada T, et al. More than 16% solar cells with a new ‘HIT’ (doped a-Si/nondoped a-Si/crystalline Si) structure. The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, 1991, 887

    [2] T Sawada, N Terada, S Tsuge et al. High-efficiency a-Si/c-Si heterojunction solar cell. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, 2, 1219(1994).

    [3] T Mishima, M Taguchi, H Sakata et al. Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells, 95, 18(2011).

    [4] D K Gorle, N Chander. A simulation approach for device structure and thickness optimization of silicon heterojunction solar cells featuring TiO 2 as carrier-selective contact. Mater Today Proc, 39, 1916(2021).

    [5] R Champory, F Mandorlo, C Seassal et al. Influence of patterning the TCO layer on the series resistance of thin film HIT solar cells. EPJ Photovolt, 8, 80101(2017).

    [6] S Li, M Pomaska, A Lambertz et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule, 5, 1535(2021).

    [7] N Dwivedi, S Kumar, A Bisht et al. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~27% efficiency. Sol Energy, 88, 31(2013).

    [8] Libal J, Kopecek R. Bifacial Photovoltaics: Technology, applications and economics. Institution of Engineering and Technology, 2018

    [9] T S Liang, M Pravettoni, C Deline et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ Sci, 12, 116(2019).

    [10] J Liu, S H Huang, L He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J Semicond, 36, 044010(2015).

    [11] L Oppong-Antwi, S H Huang, Q N Li et al. Influence of defect states and fixed charges located at the a-Si:H/c-Si interface on the performance of HIT solar cells. Sol Energy, 141, 222(2017).

    [12] R Varache, C Leendertz, M E Gueunier-Farret et al. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol Energy Mater Sol Cells, 141, 14(2015).

    [13] V Kanneboina. The simulated performance of c-Si/a-Si:H heterojunction solar cells with nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H emitter layers. J Comput Electron, 20, 344(2021).

    [14] F Azzemou, D Rached, W Rahal. Optimisation of emitter properties for silicon heterojunction solar cell ITO/pa-Si:H/ia-Si:H/nc-Si/BSF/Al. Optik, 217, 164802(2020).

    [15] H B Huang, G Y Tian, L Zhou et al. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost. Chin Phys B, 27, 038502(2018).

    [16] S Kim, H Park, D P Pham et al. Design of front emitter layer for improving efficiency in silicon heterojunction solar cells via numerical calculations. Optik, 235, 166580(2021).

    [17] P Sathya, R Natarajan. Design and optimization of amorphous based on highly efficient HIT solar cell. Appl Sol Energy, 54, 77(2018).

    [18] Y Yao, X Y Xu, X M Zhang et al. Enhanced efficiency in bifacial HIT solar cells by gradient doping with AFORS-HET simulation. Mater Sci Semicond Process, 77, 16(2018).

    [19] Honsberg C, Bowden S. Photovoltaics education website. PV Education, 2019

    Adnan Shariah, Feda Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. Journal of Semiconductors, 2022, 43(12): 122701
    Download Citation