• Photonics Research
  • Vol. 2, Issue 1, 31 (2014)
A. M. Lerer*, I. V. Donets, G. A. Kalinchenko, and P. V. Makhno
Author Affiliations
  • Physics Department, Southern Federal University Rostov-na-Donu, Zorge St. 5, 344090 Rostov-na-Donu, Russia
  • show less
    DOI: 10.1364/PRJ.2.000031 Cite this Article Set citation alerts
    A. M. Lerer, I. V. Donets, G. A. Kalinchenko, P. V. Makhno. Volume integral method for investigation of plasmonic nanowaveguide structures and photonic crystals[J]. Photonics Research, 2014, 2(1): 31 Copy Citation Text show less
    References

    [1] M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express, 19, 22029-22106(2011).

    [2] M. Hochberg, T. Baehr-Jones, C. Walker, A. Scherer. Integrated plasmon and dielectric waveguides. Opt. Express, 12, 5481-5486(2004).

    [3] M. Born, E. Wolf. Principles of Optics(1968).

    [4] P. Berini. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B, 61, 10484-10503(2000).

    [5] J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, A. Dereux. Fiber-coupled dielectric-loaded plasmonic waveguides. Opt. Express, 18, 5314-5319(2010).

    [6] L. Liu, Z. Han, S. He. Novel surface plasmon waveguide for high integration. Opt. Express, 13, 6645-6650(2005).

    [7] A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, G. P. Agrawal. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express, 18, 6191-6204(2010).

    [8] R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A, 21, 2442-2446(2004).

    [9] T. Holmgaard, S. I. Bozhevolnyi. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B, 75, 245405(2007).

    [10] A. V. Krasavin, A. V. Zayats. Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B, 78, 045425(2008).

    [11] I. V. Novikov, A. A. Maradudin. Channel polaritons. Phys. Rev. B, 66, 035403(2002).

    [12] D. K. Gramotnev, D. F. P. Pile. Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl. Phys. Lett., 85, 6323-6325(2004).

    [13] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett., 95, 046802(2005).

    [14] D. Arbel, M. Orenstein. W-shaped plasmon waveguide for silicon based plasmonic modulator. LEOS Annual Meeting, 262-263(2006).

    [15] E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, F. J. García-Vidal. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett., 100, 023901(2008).

    [16] E. Yablonovich. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [17] J. D. Joannopoulus, R. D. Meade. Photonic Crystals: Molding the Flow of Light(1995).

    [18] S. E. Bankov. Electomagnitnye kristally(2010).

    [19] C.-O Cho, Y.-G. Roh, Y. Park, J.-S. I, H. Jeon, B.-S. Lee, H.-W. Kim, Y.-H. Choe, M. Sung, J. C. Woo. Towards nano-waveguides. Appl. Phys., 4, 245-249(2004).

    [20] A. Degiron, D. R. Smith. Numerical simulations of long-range plasmons. Opt. Express, 14, 1611-1625(2006).

    [21] R. Buckley, P. Berini. Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express, 15, 12174-12182(2007).

    [22] C. Dellagiacoma, T. Lasser, O. Martin, A. Degiron, J. Mock, D. Smith. Simulation of complex plasmonic circuits including bends. Opt. Express, 19, 18979-18988(2011).

    [23] T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, M.-H. Lee. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express, 16, 13133-13138(2008).

    [24] E. V. Golovacheva, A. M. Lerer, N. G. Parkhomenko. Diffraction of electromagnetic waves of optical range on a metallic nanovibrator. Moscow Univ. Phys. Bull., 66, 5-11(2011).

    [25] A. M. Lerer. Theoretical investigation of 2D periodic nanoplasmon structures. J. Commun. Technol. Electron., 57, 1151-1159(2012).

    [26]

    [27] D. Marcuse. Light Transmission Optics(1972).

    [28] A. M. Heikal, M. Farhat, O. Hameed, S. S. A. Obayya. Improved trenched channel plasmonic waveguide. J. Lightwave Technol., 31, 2184-2191(2013).

    [29] A. Krishnan, L. Grave de Peralta, M. Holtz, A. A. Bernussi. Finite element analysis of lossless propagation in surface plasmon polariton waveguides with nanoscale spot-sizes. J. Lightwave Technol., 27, 1114-1121(2009).

    [30] J. Guo, R. Adato. Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express, 16, 1232-1237(2008).

    [31] V. A. Kuznetsov, A. M. Lerer. Dispersion characteristics of rectangular dielectric waveguide. Radio Eng. Electron. Phys., 27, 24-27(1982).

    [32] V. A. Kuznetsov, A. M. Lerer. Dispersion characteristics of dielectric waveguides on substrates. Radio Eng. Electron. Phys., 29, 53-58(1984).

    [33] G. A. Kalinchenko, A. M. Lerer. Investigations of dielectric gratings using electrodynamic models based on volume integral equations. J. Commun. Technol. Electron., 48, 1221-1227(2003).

    [34] G. A. Kalinchenko, A. M. Lerer. Wideband all-dielectric diffraction grating on chirped mirror. J. Lightwave Technol., 28, 2743-2749(2010).

    CLP Journals

    [1] Siqi Duan, Yuping Chen, Guangzhen Li, Chuanyi Zhu, Xianfeng Chen. Broadband polarization beam splitter based on a negative refractive lithium niobate photonic crystal slab[J]. Chinese Optics Letters, 2016, 14(4): 042301

    [2] Jie Yang, Gongwei Lin, Yueping Niu, Yihong Qi, Fengxue Zhou, Shangqing Gong. Propagation properties of the terahertz waveguide using a metallic nanoslit narrower than skin depth[J]. Chinese Optics Letters, 2016, 14(7): 072401

    A. M. Lerer, I. V. Donets, G. A. Kalinchenko, P. V. Makhno. Volume integral method for investigation of plasmonic nanowaveguide structures and photonic crystals[J]. Photonics Research, 2014, 2(1): 31
    Download Citation