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1. INTRODUCTION
Implementation of photonic and plasmonic nanostructures
significantly expands horizons in signal processing. Very soon
the unique capabilities of plasmonic waveguides to manipu-
late light signals in volumes less than the diffraction limit will
allow us to increase device densities in integrated photonic
circuits. Plasmonic-based sensors and detectors have already
been used in biomedicine and optical communications [1].
Continuing development of plasmonic nanostructures is
constantly fueling the exploration of new physical regimes
in quantum optics and atomic physics. Progress in the next
generation of nanophotonic circuits is defined by new manu-
facturing technologies [2] and by progress in mathematical
methods, allowing better understanding of the physics of
the phenomena emerging from interactions of individual pho-
tonic, plasmonic, electronic, and mechanical components [3].

In order to use nanowaveguides as connecting wires
for information signal transfer, a variety of plasmonic struc-
ture designs have been studied recently. These include, for
example, metallic strips [4,5], three-layer metal–dielectric
structures [6–9], dielectric-loaded surface plasmon-polariton
(SPP) waveguides [10,11], V and W metal grooves [12–14],
and Λ-shaped metal wedges [11,15].

Optical media with regularized insertions were studied by
Yablonovich in [16]. These media were called photonic crys-
tals (PCs) because of a bandgap presence [17]. Over the past
several years, various two-dimensional PCs, composed mostly
of cylindrical insertions, have been investigated. A detailed
review of these investigations is presented in the book by
Bankov [18]. Recently, new simplified technologies were
developed for manufacturing three-dimensional PCs made
of microcylinders placed between two multilayer films [19].

Compact plasmon waveguides generally suffer from dissi-
pative losses because of high absorption in metals [20,21]. To
solve the absorption problem, researchers began to use thin
metal nanolayers alternating with dielectric layers, where

plasmons can propagate onmetal–dielectric borders [22]. This
approach gave impressive results—signals propagated on
2.5 cm [23], but the gold waveguide was wide.

Nanophotonic circuit designers are now trying to reach an
optimal balance of wave confinement and absorption losses in
plasmonic waveguides.

There is a wide range of methods for modeling of electro-
magnetic wave diffraction and propagation. For a limited
number of boundary problems, there are analytical solutions.
For example, for diffraction on spheres, there is Mie
theory [3].

The majority of numerical methods for calculation of an
electromagnetic field in the resonant band can be split in
two groups. The first group—the methods based on direct sol-
ution of wave equations with defined boundary conditions—
includes finite-difference time-domain, the finite element
method, and the finite integration technique. In the second
group of methods, the boundary problem is reduced to the
solution of integrals, the integral–differential, pairs of inte-
grals, and pairs of sum equations.

Without doubt, the advantage of the first group of methods
is their versatility. Their disadvantages are high requirements
for a computer, long calculation time, the need to digitize not
only the scattering object, but also the space around the scat-
terer, and difficulties with simulations of small-scale elements.
In addition, there are problems with satisfaction of boundary
conditions for radiation to open space. For the second group
of methods these problems are absent. The choice of the
integral equation (IE) type, first and foremost, is defined by
the structure of the object under investigation. Therefore,
the methods based on the IE solution are not as universal
as the methods in the first group, but computer programs cre-
ated based on them work several orders of magnitude faster.

There are several types if IE describing diffraction on
dielectric bodies. The majority of them can be split in two
groups—surface IE (SIE), where the unknown variable is
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the field on the dielectric border, and volume IE (VIE), where
the unknown variable is the field in all internal points of a
body. VIEs have several advantages: they are simpler than
surface ones [24, 25], inhomogeneity and nonlinearity do
not make simulations more complicated, as happens in the
case of surface equations, and the method gives an electrical
field inside of a dielectric as the equation solution.

The main goal of this paper is development of a new semi-
analytical method to solve the vector integral–differential
equation, describing electromagnetic wave propagation in
three-dimensional periodic metal–dielectric structures, and
a theoretical investigation of PCs and waveguides.

The subject of investigation is planar multilayer dielectric
structures with dielectric insertions; see Fig 1. The insertions
can be two-dimensional periodic with period dx;y, and one-
dimensional periodic with periods dy. Dielectric layers are
parallel to the plane, z � 0. The number of layers in a struc-
ture is arbitrary, the top and bottom layers are half-infinite, the
thickness of an internal layer is hn, and layer numeration is
from top to bottom. An electromagnetic wave propagates at
angle φ to axis x. The horizontal cross section of the insertion
has an elliptical shape, and the ellipse size depends on vertical
coordinate z; the vertical cross section is a trapezium.
Because the number of insertions and their locations are
arbitrary, we can simulate structures of absolutely arbitrary
cross section. The dielectric constants of the layers are com-
plex, which makes it possible to consider metal layers in the
optical range.

2. METHOD
In Lerer’s paper [25] the problem of diffraction on a multilayer
two-dimensional dielectric diffraction grating was reduced to
the solution of a VIE. Since the structure is periodic, the VIE is
solved only inside volume V of one insertion:

Dr�x; y; z�
τ

�
X∞
p�−∞

X∞
q�−∞

X3
s�1

Z
V

exp�i�αpx̄� βqȳ��~grs�z; z0�Ds�z0�dv0;

r � 1; 2; 3; x; y; z ∈ V; (1)

where

x̄ � x − x0; ȳ � y − y0;

Dr�x; y; z� � Er�x; y; z�τ�x; y; z�;
τ�x; y; z� � εb�x; y; z�∕εn�z� − 1;

αp � 2pπ
dx

� kn0 cos φ; βp � 2qπ
dy

� kn0 sin φ;

where Er�x; y; z�τ�x; y; z� is the field at the point of observa-
tion, k is the wave number in vacuum, n0 � c∕vϕ is the effec-
tive RI (ERI), and εb�x; y; z� and εn�z� are the dielectric
permittivities of an insertion and an ambient layer at the point
of observation �x; y; z�. The expressions for the elements of
tensor Green function ~grs are developed in [25]. VIE (1) is
bisingular [24], and numerical simulation methods are sup-
posed to take this fact into account. An effective method
for simulating optical metallic nanovibrators is presented in
papers [24] and [25]. The method is based on integral repre-
sentation of the Green function, and the VIE was reduced to a
set of linear algebraic equations (SLAEs) and solved by the
Galerkin method. The VIE kernel singularity shows itself in
slow convergence in the matrix elements of the SLAE. It is
simpler to improve the convergence than to achieve integral
kernel singularity regularization. This approach was used in
this work. We seek a solution in the form of

Dr�x; y; z� �
XNφ

l�−Nφ

XNr

m�1

Xr
lmnVlmn�x; y; z�; (2)

where Xr
lmn are unknown coefficients, Vlmn�x; y; z� are the

basis functions (BFs)

Vlmn�x; y; z� � exp�ilφ�Jl�ζ�l�mr�z��Zn�z�; (3)

Jl are the Bessel functions of the first kind, and ζ�l�m are
the zeros of the derivative of the Bessel function, i.e.,
J 0
l�ζ�l�m � � 0. Coordinates r, φ are expressed via x, y:

x � ax�z�r sin φ; y � ay�z�r cos φ: (4)

2ax�z�, 2ay�z� are the ellipse axes in the cross section with
coordinate z, and Zn�z� is the BF on coordinate z. Here we
used spline functions of first kind: Zn�z� � σ�1�n �z�.

Substitute Eqs. (2) and (3) into Eq. (1), multiply by
V�

lmn�x; y; z�; l � 0;�1;…; m � 1; 2;…; n � 1; 2;…, and inte-
grate over the volume of an insertion. As a result, we obtain
the SLAE relative to unknowns Xr

lmn. All integrals in the
matrix elements of the SLAE we find analytically. The condi-
tion when the SLAE determinant is equal to zero defines the
equation for finding the ERI of the structure.

The matrix elements are expressed through a double series
on p, q [see Eq. (1)], and the series summation takes the major
part of computing time. We propose a simple method to
improve the series convergence. When

ρpq �
���������������������������������������������������
�ax�z�αp�2 � �ay�z�βp�2

q
> Rmax ≫ 1;

where Rmax is a certain programmed number, we substitute
the series of terms by their asymptotes, and neglect the

Fig. 1. Structures under consideration.
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oscillating term of the asymptotes. For the summing up of the
remainder of series we used the first term of the Euler–
Maclaurin formula, i.e., summation over p, q is substituted
by integration over p, q. This convergence improvement
method lets us reduce the number of series terms and
calculation time 16–25 times without a loss in accuracy.
For calculations with accuracy as high as 0.1% it is enough
to take two–three angular BFs exp�ilφ�, and the same number
of radial BFs Jl�ζ�l�mr�z��. The quantity of BFs Zn�z� is defined
by the profile of an insertion, and the ratio of the insertion
height to wavelength. To reach the accuracy mentioned above
it is enough to take 6–8 functions per one wavelength along
the insertion.

Let us consider a one-dimensional grating made of
waveguides with periodicity in the x direction. In this case,
the electric field dependence on coordinate x in Eq. (1)
can be expressed as exp�−ikxx�, and the series on p does
not exist. If an electromagnetic wave propagates across the
grating (φ � π∕2), the VIE [Eq. (1)] splits into two equations,
describing propagation of TE and TM waves. For the rest of
cases the wave is hybrid. We seek a solution in the form of

Dr�y0; z0� �
XNy−1

μ�0

XNz

v�0

Xr
μvVμv�y0; z0�;

where Xr
μv are the unknown coefficients, Vμv�y; z� are BFs,

and

Vμv�y; z� � Y μv�y�σ�1�v �z�;

Y μv�y� � CμvPμ

�
y − ȳv
lv

�
;

where Pμ are Legendre polynomials, ȳv is the insertion center
coordinate, lv is the insertion half-width in the z � zv cross
section, zv is the knot of the spline function σ�1�v �z�, and we
select the constant Cμ;v in the way which lets Fourier trans-
form of Y μv in Eq. (1) to be expressed with the formula

~Yμv�βq� � �−i�μ Jμ�1∕2�βqlv�
�βqlv�1∕2

exp�−iβqȳv�:

For a one-dimensional grating the asymptotic series can be
summed up analytically.

3. COMPLEX ROOTS RETRIEVAL
The propagation constant is complex in waveguides with com-
plex dielectric constants. Finding complex roots of complex
functions is a difficult problem. The main problem is root
localization in the complex plane. The roots can be localized
by using the principle of the argument. However, its numerical
implementation requires multiple calculations of a function,
which leads to a long computation time for complex struc-
tures. For practical needs, the waves with low losses are
the most interesting. In this case, the complex root search
process can be simplified in the way described below. Express
our propagation constant as β�ε0 − iε00�. In the low-loss case we
have ε0 > ε00 and can use only three terms of the Taylor series
expansion:

β�ε0 − iε00� ≈ β�ε0� − iε00β0�ε0� − �ε00�2β00�ε0�∕2:

Because β�ε� is an analytical function, its derivatives do not
depend on a direction. The derivatives can be substituted
by finite differences:

ε00β0�ε0� ≈ β�ε0� − β�ε0 − ε00�;
�ε00�2β00�ε0� ≈ β�ε0 � ε00� � β�ε0 − ε00� − 2β�ε0�:

We have

β�ε0 − iε00� ≈ β�ε0� − i�β�ε0� − β�ε0 − ε00��
− �β�ε0 � ε00� � β�ε0 − ε00� − 2β�ε0��. (5)

Thus, to find a complex propagation constant we need to find
three real propagation constants for dielectric waveguides
with real dielectric permittivity and use Eq. (5).

We can prove this approach with following tests:

i. An E-wave is propagating on the boundary of half-
infinite media. The first medium is a dielectric with refractive
coefficient n1 � 1.7, and the second medium is silver [26]. The
analytical solution for this case is well known:

n � β

k
�

��������������������
n2
1n

2
Ag

n2
1 � n2

Ag

vuut ; (6)

where k is the wave number in vacuum.
In Table 1 are presented the results for complex RI n �

n0
− in00 obtained with Eqs. (5) and (6).

ii. An E-wave in the waveguide made of three layers: the
first layer is vacuum (half-infinite), the second layer is silver
film (thickness 20 nm, upper numbers; 50 nm, lower numbers
in Table 2), and the third is half-infinite substrate with RI 1.7. It
is known that for this type of waveguide there is an analytical
dispersive equation [27]. The equation can be solved numeri-
cally. Let us call it an “accurate solution.” The solution
obtained with Eq. (5) is called an “approximate solution.”
The approximate and accurate solutions are presented in
Table 2. Tables 1 and 2 show that the accuracy of approximate
solution rises when losses go down. The error of calculation of
phase speed does not exceed 1%. The error of loss coefficient
calculation is 1 order of magnitude higher.

iii. The third test (Table 3) depicts a comparison of our
results to the results from Ref. [28], where the authors used
full-vectorial finite difference method for linear oblique

Table 1. Complex Refractive Index Obtained with

Eqs. (5) and (6) for E-Wave Propagating on the

Boundary of Half-Infinite Silver and Dielectric

Layers

Exact Solution Approximate Solution

λ, nm Re β∕n0 Im β∕Re β Re β∕n0 Im β∕Re β

450 1.36577 0.05357 1.36438 0.04643
500 1.22712 0.02266 1.22702 0.02048
550 1.16068 0.01251 1.16066 0.01156
600 1.12289 0.00841 1.12288 0.00785
700 1.07894 0.00509 1.07894 0.00478
800 1.05587 0.00304 1.05587 0.00289
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and curved interfaces (FVFD-LOCI). We simulated an ERI and
effective propagation length for a 120 nm wide and 1200 nm
deep rectangular groove made in a gold layer. The effective
propagation length in our work is defined the same as in [28]:

L0 �
1

Im�β� �
λ

2πn00 :

Data from [28] for Table 3 were taken from graphs and show
graphical accuracy.
iv. We simulated the rib waveguide structure from [29],

where the authors used the finite element method. Their
number for the complex propagation constant is 13.2745−
0.0499i μm−1; our method gives 13.2767 − 0.0449i μm−1. Thus,
the deviation of the complex part is about 10%, which can be
explained by the fact that the height and width of the structure
in [29] is limited, but we simulated an infinite structure. Also
we simulated a metal strip placed between two dielectric
layers to compare with the results from [30], where the
authors used the commercial code FIMMWAVE. Our numbers
for n are 0.0002 higher. Because the imaginary part of ERI in
[30] is depicted on a logarithmic scale, and an exact compari-
son is difficult, we can claim about 10% difference between
our and their results.

The accuracy of our method can be increased by adding
fourth term of the Taylor series expansion in Eq. (5), but it
increases the calculation time and does not have practical
sense. Errors of experimental measurements for losses are
much higher than for phase speed.

4. SIMULATION RESULTS
The C++ numerical code we developed is a clone of the code
for the calculation of diffraction of an electromagnetic wave
on a diffraction grating [25]. Results obtained with the code
are confirmed by multiple theoretical and experimental re-
sults of other authors. For example, the results of rectangular
dielectric waveguide simulation by the finite element method
[31,32], and the results of the VIE solution by modified collo-
cation method for one-dimensional PCs [33,34].

A. Nanowaveguides
As we mentioned above, our code is a modification of the
code for simulations of wave diffraction on a diffraction gra-
ting [Fig. 1(a)]. Therefore, similar to the eigenwave spectrum
of a diffraction grating, two types of waves do exist in a nano-
waveguide spectrum. The waves of the first type have their
field confined along the waveguides (grating grooves). Their
phase velocity and their losses are not sensitive to a change in
grating period or on phase shift for the period. The second
type of wave, so-called screen waves, are not confined; their
phase velocity depends on a grating period and phase shift for
the period. Screen waves are not interesting to us. Here, we
consider a nanowaveguide [see Fig. 1(b)] as part of a diffrac-
tion grating [see Fig. 1(a)] with infinite period.

Figures 2 and 3 present the results of simulations of a sim-
ple rectangular silver waveguide [see Fig. 1(b)], placed on a
silica dielectric substrate. It is well known that a surface wave
(plasmon-polariton) propagates at the metal–dielectric boun-
dary, and the wave speed depends on the dielectric RI. This
means that, in a waveguide composed of a metal film placed
between the two dielectrics, there are two waves on each sur-
face of the metal film.

When film is thick, these waves do not interact; they
correspond to the waves for two well-known independent
structures: air–metal and metal–substrate. When the film
thickness is reduced the waves begin to interact, which leads
to effective refraction index growth, and to the increase of
losses. In Fig. 2, losses are presented through effective propa-
gation length. Comparing a rectangular waveguide and the
same thickness thin film waveguide, we can see that losses
and ERI of the rectangular one are higher because of field

Table 2. Complex Refractive Index Obtained with

Eqs. (5) and (6) for E-Wave Propagating in Vacuum-

Silver Film-Dielectric Structure

Exact Solution Approximate Solution

λ, nm Re β∕n0 Im β∕Re β Re β∕n0 Im β∕Re β

500 2.62073 0.05429 2.62030 0.04906
2.11350 0.02566 2.11324 0.02312

550 2.36265 0.03524 2.36255 0.03238
1.99280 0.01451 1.99276 0.01336

600 2.21051 0.02626 2.21046 0.02429
1.92396 0.00989 1.92394 0.00919

700 2.02354 0.01777 2.02349 0.01643
1.84336 0.00605 1.84334 0.00562

800 1.92483 0.01114 1.92482 0.01039
1.80117 0.00362 1.80130 0.00342

Table 3. Effective Refractive Index and Effective

Propagation Length Obtained with Volume Integral

Method and Full-Vectorial Finite Difference Method

for Linear Oblique and Curved Interfaces for E-Wave

Propagating in Rectangular Gold Groove

Our Results Data from [28]

f , THz λ, nm n0 L0 �μm� n0 L0 �μm�
500 600 1.29305 2.984 1.28 3
400 750 1.20683 14.690 1.21 17
300 1000 1.16711 23.438 1.17 23.3
200 1500 1.15051 24.736 1.14 33.3

Fig. 2. Solid curves represent dispersion characteristics and effec-
tive propagation length for the metal waveguide shown in the inset.
The red curves correspond to b � 20 nm, black to 15 nm. The dashed
curves depict analytical solutions for thin-film waveguides.
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appearance on the rectangle’s sides. For a short wavelength,
the field is mostly confined at the metal–substrate boundary
and the characteristics of the waveguide almost do not de-
pend on its width. Side field impact increases and n0 decreases
when wavelength or waveguide thickness goes up, and when
the waveguide width goes down. Waveguides with limited
width have a long wave cutoff at n0 less than substrate RI
because the wave leaks into the substrate. The critical wave
length decreases with increased thickness of the waveguide
and reduction of its width.

In Fig. 4 we present simulation results of a simple dielectric
nanowaveguide [see Fig. 1(b)]; a dielectric strip of a rectan-
gular cross-sectional shape is placed over silver film deposited
on a dielectric substrate. Figure 4 shows the wavelength range
where SPPs can propagate. In this range the ERI is higher than
the RI of the dielectric strip n0>1.77. The ERI, presented in
Fig. 4, increases when the width and height of the strip
increases and decreases when thickness of the metal film
decreases. In Figs. 2–4, we can see that the propagation length
for waveguides made of a dielectric strip on a metal film and
for a metal strip on a dielectric layer are approximately
the same.

Figure 5 shows the characteristics of a dielectric waveguide
with a trapezoidal cross-sectional shape. n0, of course,
grows with and increase in Wt, but dependence n0 (Wt) is
weak. This means that the concentration of the electromag-
netic field near the border of the dielectric strip and metal film
is high.

B. Photonic Crystals
In this work we investigated three types of photonic crystals
(PC). The first one is sieve-looking, made of several dielectric
layers with round periodic holes in them. In particular, the
structure consists of three layers of dielectric placed on a di-
electric substrate, as shown in Fig. 6. The two-dimensional
grating is perforated in two upper layers. As can be seen from
Fig. 6, the PC has a window of opacity. In the opacity window
area the phase velocity of the zero harmonic with a normal
dispersion (p � q � 0; p, q are the numbers of spatial harmon-
ics on the x and y axes, respectively) and the −1st harmonic

Fig. 4. Dispersion characteristics and effective propagation length
for the metal waveguide shown in the inset. All dimensions are in
nanometers.

Fig. 5. Dispersion characteristics for the metal waveguide shown in
the inset.

Fig. 6. Dispersion characteristics of waves propagating at different
angles to the axis x in all-dielectric PC [Fig. 1(c)]. Black solid curves
correspond to φ � 0°, green to φ � 10°, red to φ � 12°, and blue to
φ � 14°. The dashed curves depict the result for φ � 0° obtained by
Ansoft HFSS commercial software. All dimensions are in nanometers.

Fig. 3. Dispersion characteristics and effective propagation length
for the metal waveguide shown in the inset. The red curves corre-
spond to W � 500 nm; green, 900 nm; and black, infinity.
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with anomalous dispersion (p � −1, q � 0) become equal,
and dispersion curves for both harmonics merge and make
one wedge-looking curve. From the equality of phase
speeds for these spatial harmonics, it follows that the wave-
length in the middle of the opacity window satisfies the
condition

dn cos φ∕λ � 0.5; (7)

where d is the PC period. At this wavelength, the waves
reflected from neighboring insertions interfere in phase,
and wave propagation in the PC becomes impossible. In Fig. 6
we can see that the opacity window moves toward shorter
wavelengths when the angle of propagation changes from
0° to 14°, which is consistent with Eq. (7).

Also, from our calculations, we found that a wave with
wavelength longer than 665 nm cannot propagate in the struc-
ture in Fig. 6 if we remove reflecting heterogeneities in the
form of air holes. This happens because the ERI of such a
layered structure without holes becomes smaller than the
substrate RI, and the wave leaks into the substrate. For com-
parison of the VIE method with modern numerical methods,
we simulated this structure by HFSS code, and show the result
in Fig. 6 as a dashed curve.

In Fig. 7, a plasmon wave propagates on the boundary of a
perforated silver layer and a dielectric substrate. Losses at the
edges of the opacity window drastically increase, and in the
framework of a low-loss model, we cannot close the curves.
For λ ≤ 776 nm, ERI is less than the substrate RI and the wave
leaks into the substrate.

Figure 8 shows the dispersion curves for a structure made
of one dielectric layer with a two-dimensional periodic system
of silver cylinders deposited on a semi-infinite dielectric sub-
strate. As can be seen from the figure, the increase of cylinder
diameters leads to higher losses and a wider opacity window.
The short-wave edge of the window almost does not change
with a change of cylinder diameter. The PC at the top of Fig. 8
works as a high-frequency filter.

5. CONCLUSIONS
The Galerkin method is implemented to find the exact solu-
tion of a vector integral–differential equation to describe
electromagnetic wave diffraction on three-dimensional bodies
with complex dielectric permeability. The solution obtained is
applied to the investigation of electromagnetic wave propaga-
tion in one- and two-dimensional plasmonic structures. A new
simple method for finding the complex refractive index for
low-loss structures is proposed and proved. Three types of
nanowaveguide and three types of PC were simulated. A pos-
sibility of propagation of surface plasmonic waves with high
effective refractive index is predicted.
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