• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 110601 (2019)
Tonglu Wang*, Xinpeng Sun, Ye Li, Junfeng Shi, Lin Xu, Zhaoyang Li, and Yannan Zang
Author Affiliations
  • Institute of Detection and Countermeasure Technology, China Southern Industrial Academy, Beijing 102209, China
  • show less
    DOI: 10.3788/LOP56.110601 Cite this Article Set citation alerts
    Tonglu Wang, Xinpeng Sun, Ye Li, Junfeng Shi, Lin Xu, Zhaoyang Li, Yannan Zang. Simulation of Coherent Propagation of Nineteen-Laser-Beam Array[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110601 Copy Citation Text show less
    References

    [1] Cheng X, Wang J L, Liu C H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 47, 0103011(2018).

         Cheng X, Wang J L, Liu C H. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 47, 0103011(2018).

    [2] Yang C S, Xu S H, Zhou J et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica (Technologica), 47, 1038-1048(2017).

         Yang C S, Xu S H, Zhou J et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica (Technologica), 47, 1038-1048(2017).

    [3] Chen Z L, Lei C M, Wang Z F et al. High beam quality fiber laser synthesis of more than 14 kW on a 7×1 optical fiber power combiner with 50 μm output fiber[J]. Chinese Journal of Lasers, 45, 0415001(2018).

         Chen Z L, Lei C M, Wang Z F et al. High beam quality fiber laser synthesis of more than 14 kW on a 7×1 optical fiber power combiner with 50 μm output fiber[J]. Chinese Journal of Lasers, 45, 0415001(2018).

    [4] Li Y Z, Fan D Y. Beam combining of fiber laser[J]. Laser & Optoelectronics Progress, 42, 26-29(2005).

         Li Y Z, Fan D Y. Beam combining of fiber laser[J]. Laser & Optoelectronics Progress, 42, 26-29(2005).

    [5] Zheng Y, Yang Y F, Zhao X et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).

         Zheng Y, Yang Y F, Zhao X et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).

    [6] Gao W Q. The nonlinearity and heat effect in double-clad fiber laser with high power[J]. Laser & Infrared, 36, 829-832(2006).

         Gao W Q. The nonlinearity and heat effect in double-clad fiber laser with high power[J]. Laser & Infrared, 36, 829-832(2006).

    [7] Geng C, Yang Y, Li F et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).

         Geng C, Yang Y, Li F et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).

    [8] Jiang M, Ma P F, Zhou P et al. Performance of laser beam combination system based on brightness[J]. Acta Optica Sinica, 37, 0714001(2017).

         Jiang M, Ma P F, Zhou P et al. Performance of laser beam combination system based on brightness[J]. Acta Optica Sinica, 37, 0714001(2017).

    [9] Weyrauch T, Vorontsov M A, Carhart G W et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011). http://www.ncbi.nlm.nih.gov/pubmed/22089595

         Weyrauch T, Vorontsov M A, Carhart G W et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011). http://www.ncbi.nlm.nih.gov/pubmed/22089595

    [10] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-14-2686

         Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-14-2686

    [11] Ma Y X, Si L, Zhou P et al. The key technologies in coherent beam combination of high power fiber laser[J]. Journal of National University of Defense Technology, 34, 38-42(2012).

         Ma Y X, Si L, Zhou P et al. The key technologies in coherent beam combination of high power fiber laser[J]. Journal of National University of Defense Technology, 34, 38-42(2012).

    [12] Wang X L, Zhou P, Su R T et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201001(2017).

         Wang X L, Zhou P, Su R T et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201001(2017).

    [13] Xue Y H, He B, Zhou J et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 28, 054212(2011). http://www.irgrid.ac.cn/handle/1471x/395956

         Xue Y H, He B, Zhou J et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 28, 054212(2011). http://www.irgrid.ac.cn/handle/1471x/395956

    [14] Flores A, Ehrehreich T, Holten R et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 9728, 97281Y(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2503540

         Flores A, Ehrehreich T, Holten R et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 9728, 97281Y(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2503540

    [15] Liu Y[J]. The first 2 megawatts fiber laser officially installed to break the foreign technology monopoly China Plant Engineering, 2017, 4.

         Liu Y[J]. The first 2 megawatts fiber laser officially installed to break the foreign technology monopoly China Plant Engineering, 2017, 4.

    [16] Nilsson J, Sahu J K, Jeong Y et al. High-power fiber lasers: new developments[J]. Proceedings of SPIE, 4974, 50-59(2003). http://spie.org/Publications/Proceedings/Paper/10.1117/12.478310

         Nilsson J, Sahu J K, Jeong Y et al. High-power fiber lasers: new developments[J]. Proceedings of SPIE, 4974, 50-59(2003). http://spie.org/Publications/Proceedings/Paper/10.1117/12.478310

    [17] Lou Q H, Zhou J, Zhu J Q et al. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 35, 135-138(2006).

         Lou Q H, Zhou J, Zhu J Q et al. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 35, 135-138(2006).

    [18] Xiao R, Hou J, Jiang Z F. Coherent combining of fiber lasers[J]. Laser Technology, 29, 516-518, 532(2005).

         Xiao R, Hou J, Jiang Z F. Coherent combining of fiber lasers[J]. Laser Technology, 29, 516-518, 532(2005).

    [19] Fan X Y. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin: Harbin Institute of Technology, 5-9(2010).

         Fan X Y. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin: Harbin Institute of Technology, 5-9(2010).

    [20] Li X K, He Y T. Performance of stochastic parallel gradient descent algorithm in coherent combination[J]. Acta Optica Sinica, 36, 1201001(2016).

         Li X K, He Y T. Performance of stochastic parallel gradient descent algorithm in coherent combination[J]. Acta Optica Sinica, 36, 1201001(2016).

    [21] Zhang S, Zhang J W, Mu J et al. Dynamical phase error control and bandwidth analysis for coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 38, 0514003(2018).

         Zhang S, Zhang J W, Mu J et al. Dynamical phase error control and bandwidth analysis for coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 38, 0514003(2018).

    [22] Zhou P, Liu Z J, Xu X J et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 47, 3350-3559(2008). http://www.ncbi.nlm.nih.gov/pubmed/18566633

         Zhou P, Liu Z J, Xu X J et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Applied Optics, 47, 3350-3559(2008). http://www.ncbi.nlm.nih.gov/pubmed/18566633

    [23] Tang Q J, Shi X C, Hu Q Q. Effect of the filled factor on the far field profiles of laser beam combination[J]. Journal of Propulsion Technology, 28, 566-569(2007).

         Tang Q J, Shi X C, Hu Q Q. Effect of the filled factor on the far field profiles of laser beam combination[J]. Journal of Propulsion Technology, 28, 566-569(2007).

    [24] Yan A M, Liu L R, Liu D A et al. Recent progress in phase-locking and aperture filling of fiber laser arrays[J]. Laser & Optoelectronics Progress, 45, 33-39(2008).

         Yan A M, Liu L R, Liu D A et al. Recent progress in phase-locking and aperture filling of fiber laser arrays[J]. Laser & Optoelectronics Progress, 45, 33-39(2008).

    [25] Vorontsov M A, Lachinova S L. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis[J]. Journal of the Optical Society of America A, 25, 1949-1959(2008). http://europepmc.org/abstract/MED/18677358

         Vorontsov M A, Lachinova S L. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis[J]. Journal of the Optical Society of America A, 25, 1949-1959(2008). http://europepmc.org/abstract/MED/18677358

    [26] Zhou P, Wang X L, Ma Y X et al[J]. Optimal truncation of element beam in a coherent fiber laser array Chinese Physics Letters, 2009, 116-118.

         Zhou P, Wang X L, Ma Y X et al[J]. Optimal truncation of element beam in a coherent fiber laser array Chinese Physics Letters, 2009, 116-118.

    [27] Du X W. Factors for evaluating beam guality of a real high power laser on the target surface in far field[J]. Chinese Journal of Lasers, 24, 327-332(1997).

         Du X W. Factors for evaluating beam guality of a real high power laser on the target surface in far field[J]. Chinese Journal of Lasers, 24, 327-332(1997).

    [28] He Y X. Study of evaluating and measuring laser beam quality[D]. Changsha: National University of Defense Technology, 3-6(2012).

         He Y X. Study of evaluating and measuring laser beam quality[D]. Changsha: National University of Defense Technology, 3-6(2012).

    [29] He Y X, Li X Y. Study on standard for evaluating the far-field energy focusability of laser beams[J]. Laser & Optoelectronics Progress, 49, 051403(2012).

         He Y X, Li X Y. Study on standard for evaluating the far-field energy focusability of laser beams[J]. Laser & Optoelectronics Progress, 49, 051403(2012).

    [30] Liu Z J, Zhou P, Xu X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 36, 773-778(2009).

         Liu Z J, Zhou P, Xu X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 36, 773-778(2009).

    [31] Huang Y B, Wang Y J. The effect of tracking jitter on the beam spreading induced by atmospheric turbulence[J]. Acta Optica Sinica, 25, 152-156(2005).

         Huang Y B, Wang Y J. The effect of tracking jitter on the beam spreading induced by atmospheric turbulence[J]. Acta Optica Sinica, 25, 152-156(2005).

    [32] McKechnie T S. General theory of light propagation and imaging through the atmosphere[M]. Cham: Springer, 162-165(2016).

         McKechnie T S. General theory of light propagation and imaging through the atmosphere[M]. Cham: Springer, 162-165(2016).

    [33] von Kármán T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences, 34, 530-539(1948). http://europepmc.org/abstract/med/16588830

         von Kármán T. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences, 34, 530-539(1948). http://europepmc.org/abstract/med/16588830

    [34] Fu S Y, Wang T L, Zhang S K et al. Non-probe compensation of optical vortices carrying orbital angular momentum[J]. Photonics Research, 5, 251-255(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000233w4z6C9

         Fu S Y, Wang T L, Zhang S K et al. Non-probe compensation of optical vortices carrying orbital angular momentum[J]. Photonics Research, 5, 251-255(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000233w4z6C9

    [35] Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 4, B1-B4(2016). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201605002.htm

         Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 4, B1-B4(2016). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201605002.htm

    Tonglu Wang, Xinpeng Sun, Ye Li, Junfeng Shi, Lin Xu, Zhaoyang Li, Yannan Zang. Simulation of Coherent Propagation of Nineteen-Laser-Beam Array[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110601
    Download Citation