• Journal of Semiconductors
  • Vol. 42, Issue 6, 062301 (2021)
Bowen Liu1 and Jiangtao Xu2
Author Affiliations
  • 1Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1088/1674-4926/42/6/062301 Cite this Article
    Bowen Liu, Jiangtao Xu. Modeling the photon counting and photoelectron counting characteristics of quanta image sensors[J]. Journal of Semiconductors, 2021, 42(6): 062301 Copy Citation Text show less

    Abstract

    A signal chain model of single-bit and multi-bit quanta image sensors (QISs) is established. Based on the proposed model, the photoresponse characteristics and signal error rates of QISs are investigated, and the effects of bit depth, quantum efficiency, dark current, and read noise on them are analyzed. When the signal error rates towards photons and photoelectrons counting are lower than 0.01, the high accuracy photon and photoelectron counting exposure ranges are determined. Furthermore, an optimization method of integration time to ensure that the QIS works in these high accuracy exposure ranges is presented. The trade-offs between pixel area, the mean value of incident photons, and integration time under different illuminance level are analyzed. For the 3-bit QIS with 0.16 e-/s dark current and 0.21 e- r.m.s. read noise, when the illuminance level and pixel area are 1 lux and 1.21 μm2, or 10 000 lux and 0.21 μm2, the recommended integration time is 8.8 to 30 ms, or 10 to 21.3 μs, respectively. The proposed method can guide the design and operation of single-bit and multi-bit QISs.
    $ {{p}}\left[{k}_{\rm{ph}}\right]=\frac{{{\mu }_{\rm{ph}}}^{{k}_{\rm{ph}}}}{{k}_{\rm{ph}}!}{\rm{e}}^{-{\mu }_{\rm{ph}}}, $ (1)

    View in Article

    $ {p}\left[{k}_{\rm{phe}};{k}_{\rm{ph}},{\rm{QE}}\right]=\frac{{k}_{\rm{ph}}!}{{k}_{\rm{phe}}!\left({k}_{\rm{ph}}-{k}_{\rm{phe}}\right)!}{\rm{QE}}^{{k}_{\rm{phe}}}(1-{{\rm{QE}})}^{{k}_{\rm{ph}}-{k}_{\rm{phe}}}, $ (2)

    View in Article

    $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! {p}\left[{k}_{\rm{phe}}\right]=\sum\limits_{{k}_{\rm{ph}}={k}_{\rm{phe}}}^{\infty }{p}\left[{k}_{\rm{ph}}\right]{p}\left[{k}_{\rm{phe}};{k}_{\rm{ph}},\rm{QE}\right] $ (3)

    View in Article

    $ =\frac{{(\rm{QE}\cdot {\mu }_{\rm{ph}})}^{{k}_{\rm{phe}}}}{{k}_{\rm{phe}}!}{\rm{e}}^{-{\mu }_{\rm{ph}}}\sum\limits_{{k}_{\rm{ph}}={k}_{\rm{phe}}}^{\infty }\frac{1}{({k}_{\rm{ph}} \!-\!{k}_{\rm{phe}})!}{\left[(1 \! - \! \rm{QE}){\mu }_{\rm{ph}}\right]}^{{k}_{\rm{ph}}-{k}_{\rm{phe}}} $ (4)

    View in Article

    $ =\frac{({\rm{QE}\cdot {\mu }_{\rm{ph}})}^{{k}_{\rm{phe}}}}{{k}_{\rm{phe}}!}{\rm{e}}^{-{\mu }_{\rm{ph}}}{\rm{e}}^{(1-\rm{QE}){\mu }_{\rm{ph}}} $ (5)

    View in Article

    $ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! =\frac{({\rm{QE}\cdot {\mu }_{\rm{ph}})}^{{k}_{\rm{phe}}}}{{k}_{\rm{phe}}!}{\rm{e}}^{-\rm{QE}\cdot {\mu }_{\rm{ph}}} $ (6)

    View in Article

    $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! =\frac{{{\mu }_{\rm{phe}}}^{{k}_{\rm{phe}}}}{{k}_{\rm{phe}}!}{\rm{e}}^{-{\mu }_{\rm{phe}}}, $ (7)

    View in Article

    $ {p}\left[{k}_{\rm{d}}\right]=\frac{{{\mu }_{\rm{d}}}^{{k}_{\rm{d}}}}{{k}_{\rm{d}}!}{\rm{e}}^{-{\mu }_{\rm{d}}}, $ (8)

    View in Article

    $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! {p}\left[{k}_{\rm{e}}\right]=\sum\limits_{{k}_{\rm{phe}}=0}^{{k}_{\rm{e}}}{p}\left[{k}_{\rm{phe}}\right]{p}\left[{k}_{\rm{d}}={k}_{\rm{e}}-{k}_{\rm{phe}}\right] $ (9)

    View in Article

    $ =\frac{1}{{k}_{\rm{e}}!}{\rm{e}}^{-({\mu }_{\rm{phe}}+{\mu }_{\rm{d}})}\sum\limits_{{k}_{\rm{phe}}=0}^{{k}_{\rm{e}}}\frac{{k}_{\rm{e}}!}{{k}_{\rm{phe}}!\left({k}_{\rm{e}}-{k}_{\rm{phe}}\right)!}{{\mu }_{\rm{phe}}}^{{k}_{\rm{phe}}}{{\mu }_{\rm{d}}}^{{k}_{\rm{e}}-{k}_{\rm{phe}}} $ (10)

    View in Article

    $ =\frac{{({\mu }_{\rm{phe}}+{\mu }_{\rm{d}})}^{{k}_{\rm{e}}}}{{k}_{\rm{e}}!}{\rm{e}}^{-({\mu }_{\rm{phe}}+{\mu }_{\rm{d}})} $ (11)

    View in Article

    $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! =\frac{{{\mu }_{\rm{e}}}^{{k}_{\rm{e}}}}{{k}_{\rm{e}}!}{\rm{e}}^{-{\mu }_{\rm{e}}}, $ (12)

    View in Article

    $ {\rm{CG}}=\frac{q}{{C}_{{\rm{FD}}}}, $ (13)

    View in Article

    $ {V}_{{\rm{CG}}}={\rm{CG}}\cdot {k}_{\rm{e}}. $ (14)

    View in Article

    $ {U}_{{\rm{CG}}}=\frac{{V}_{{\rm{CG}}}}{\rm{CG}}. $ (15)

    View in Article

    $ {u}_{\rm{n}}=\frac{{v}_{\rm{n}}}{{\rm{CG}}}. $ (16)

    View in Article

    $ P\left[{U}_{{\rm{RO}}};{U}_{{\rm{CG}}}\right]=\frac{1}{\sqrt{2\pi {{u}_{\rm{n}}}^{2}}}\exp\left[-\frac{{({U}_{{\rm{RO}}}-{U}_{{\rm{CG}}})}^{2}}{2{{u}_{\rm{n}}}^{2}}\right]. $ (17)

    View in Article

    $ P\left[{U}_{{\rm{RO}}}\right]=\sum\limits_{{k}_{\rm{e}}=0}^{\infty }\frac{{p}\left[{k}_{\rm{e}}\right]}{\sqrt{2\pi {{u}_{\rm{n}}}^{2}}}\exp\left[-\frac{{({U}_{{\rm{RO}}}-{k}_{\rm{e}})}^{2}}{2{{u}_{\rm{n}}}^{2}}\right], $ (18)

    View in Article

    $ {p}\left[ {{\rm{DN}}} \right] = \left\{ \begin{array}{l} \int_{ - \infty }^{{U_{{\rm{th}}1}}} P\left[ {{U_{{\rm{RO}}}}} \right]{\rm{d}}{U_{{\rm{RO}}}},\;\;\;\;\;\;\;{\rm{DN}} = {\rm{}}0,\\ \int_{{U_{{\rm{th}}2}}}^{{U_{{\rm{th}}1}}} P\left[ {{U_{{\rm{RO}}}}} \right]{\rm{d}}{U_{{\rm{RO}}}},\;\;\;\;\;\;\;0 \lt , {\rm{DN}} \lt , {\rm{FW}}{{\rm{C}}_{{\rm{eff}}}},\\ \int_{{U_{{\rm{th}}2}}}^{ + \infty } P\left[ {{U_{{\rm{RO}}}}} \right]{\rm{d}}{U_{{\rm{RO}}}},\;\;\;\;\;\;\;{\rm{DN}} = {\rm{FW}}{{\rm{C}}_{{\rm{eff}}}},\\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\quad{\rm{DN}} \gt; {\rm{FW}}{{\rm{C}}_{{\rm{eff}}}}, \end{array} \right. $ (19)

    View in Article

    $ M={M}_{\rm{S}}{M}_{\rm{T}}, $ (20)

    View in Article

    $ {S}_{{\rm{DN}}}=\sum\limits_{i=0}^{M}{S}_{{\rm{DN}},i}=M\cdot \sum\limits_{\rm{DN}=0}^{\infty }\rm{DN}\cdot {p}\left[\rm{DN}\right], $ (21)

    View in Article

    $ {S_{{\rm{DN}},{\rm{sat}}}} = {\rm{FW}}{{\rm{C}}_{{\rm{equ}}}} = M \cdot {\rm{FW}}{{\rm{C}}_{{\rm{eff}}}} = M\left( {{2^n} - 1} \right), $ (22)

    View in Article

    $ D=\frac{{S}_{{\rm{DN}}}}{{S}_{{\rm{DN}},{\rm{sat}}}}=\frac{\displaystyle\sum\limits_{\rm{DN}=0}^{\infty }\rm{DN}\cdot {p}\left[\rm{DN}\right]}{{2}^{n}-1}, $ (23)

    View in Article

    $ {S}_{\rm{ph}}=M\sum\limits_{{k}_{\rm{ph}}=0}^{\infty }{k}_{\rm{ph}}\cdot {p}\left[{k}_{\rm{ph}}\right]=M{\mu }_{\rm{ph}}. $ (24)

    View in Article

    $ {S}_{\rm{phe}}=M\sum\limits_{{k}_{\rm{phe}}=0}^{\infty }{k}_{\rm{phe}}\cdot {p}\left[{k}_{\rm{phe}}\right]={M\mu }_{\rm{phe}}. $ (25)

    View in Article

    $ {\rm{SER}}_{\rm{ph}}=\frac{\left|{S}_{{\rm{DN}}}-{S}_{\rm{ph}}\right|}{{S}_{\rm{ph}}}=\frac{\left|\sum\limits_{\rm{DN}=0}^{\infty }{\rm{DN}}\cdot {p}\left[{\rm{DN}}\right]-{\mu }_{\rm{ph}}\right|}{{\mu }_{\rm{ph}}}, $ (26)

    View in Article

    $ {\rm{SER}}_{\rm{phe}}=\frac{\left|{S}_{{\rm{DN}}}-{S}_{\rm{phe}}\right|}{{S}_{\rm{phe}}}=\frac{\left|\sum\limits_{\rm{DN}=0}^{\infty }{\rm{DN}}\cdot {p}\left[{\rm{DN}}\right]-{\mu }_{\rm{phe}}\right|}{{\mu }_{\rm{phe}}}, $ (27)

    View in Article

    $ {\mu _{\rm{s}}}{\rm{}} = {\rm{}}\frac{{{I_{{\rm{lux}}}}{A_{{\rm{jot}}}}\tau }}{{K{E_{{\rm{ph}}}}}}{\rm{}} = {\rm{}}\frac{{{I_{{\rm{lux}}}}{A_{{\rm{jot}}}}\tau \lambda }}{{Khc}}, $ (28)

    View in Article

    $ {\mu _{{\rm{ph}}}} = \frac{{T\left( {1 - R} \right) \cdot {\rm{FF}}}}{{4{F_{\rm{N}}}^2}}{\mu _{\rm{s}}}, $ (29)

    View in Article

    $ {\mu _{{\rm{ph}}}} = L{I_{{\rm{lux}}}}{A_{{\rm{jot}}}}\tau , $ (30)

    View in Article

    $ {D}_{\rm{A}}=2.44\lambda {F}_{\rm{N}}. $ (31)

    View in Article

    Bowen Liu, Jiangtao Xu. Modeling the photon counting and photoelectron counting characteristics of quanta image sensors[J]. Journal of Semiconductors, 2021, 42(6): 062301
    Download Citation