• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 114004 (2021)
Zhao Hui, Wang Haoyu, Zhu Siqi*, Yin Hao, Li Zhen, and Chen Zhenqiang
Author Affiliations
  • Department of Optoelectronic Engineering, Institute of Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/LOP202158.0114004 Cite this Article Set citation alerts
    Zhao Hui, Wang Haoyu, Zhu Siqi, Yin Hao, Li Zhen, Chen Zhenqiang. 578.5 nm End-Pumped Passively Q-switched Raman Yellow Laser[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114004 Copy Citation Text show less
    References

    [1] Georgiev D, Gapontsev V P, Dronov A G et al. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Optics Express, 13, 6772-6776(2005).

    [2] Feng Y, Taylor L, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 17, 19021-19026(2009).

    [3] Feng Y, Huang S H, Shirakawa A et al. 589 nm light source based on Raman fiber laser[J]. Japanese Journal of Applied Physics, 43, L722-L724(2004). http://adsabs.harvard.edu/abs/2004JaJAP..43L.722F

    [4] Castellano-Hernández E, Metz P W, Demesh M et al. Efficient directly emitting high-power Tb 3+∶LiLuF4 laser operating at 587.5 nm in the yellow range[J]. Optics Letters, 43, 4791(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=a702b3728f688d80e0b7c6fe8c0fdfc0

    [5] Pask H M, Piper J A. Efficient all-solid-state yellow laser source producing 1.2-W average power[J]. Opt Lett, 24, 1490-1492(1999).

    [6] Chen Y F, Tsai S W. Diode-pumped-switched Nd∶ YVO4 yellow laser with intracavity sum-frequency mixing[J]. Optics Letters, 27, 397-399(2002).

    [7] Bolognesi G, Parisi D, Calonico D et al. Yellow laser performance of Dy 3+ in co-doped Dy, Tb∶LiLuF4[J]. Optics Letters, 39, 6628-6631(2014). http://www.ncbi.nlm.nih.gov/pubmed/25490638

    [8] Xia Z C, Yang F G, Qiao L et al. End pumped yellow laser performance of Dy 3+∶ZnWO4[J]. Optics Communications, 387, 357-360(2017). http://www.sciencedirect.com/science/article/pii/S0030401816310719

    [9] Hao E J, Li T, Zhang L Q et al. Methods of obtaining all-solid-state yellow lasers[J]. Laser & Infrared, 39, 731-734(2009).

    [10] Yuan Y Z, Li B, Guo X Y. Laser diode pumped Nd∶YAG crystals frequency summing 589 nm yellow laser[J]. Optik, 127, 710-712(2016).

    [11] Wei L J, Zhu S Q, Zhou H Q et al. SFG and SHG in a dual-wavelength Nd:YAG laser system[J]. Optik, 154, 711-716(2018). http://www.sciencedirect.com/science/article/pii/S0030402617313840?via%3Dihub

    [12] Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 11, 353-371(1999).

    [13] Pask H M, Dekker P, Mildren R P et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 32, 121-158(2008).

    [14] Lee A J, Pask H M, Piper J A et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission[J]. Optics Express, 18, 5984-5992(2010).

    [15] Zhu H, Duan Y, Zhang G et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 7.9 W yellow light[J]. Optics Express, 17, 21544-21550(2009).

    [16] Xu H H, Zhang X Y, Wang Q P et al. Diode-pumped passively Q-switched Nd∶YAG/BaWO4/KTP yellow laser[C]//2012 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2012, San Jose, CA, USA., 1-2(2012).

    [17] Zhu S Q, Jiang W, Liu Y M et al. Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system[J]. Journal of Russian Laser Research, 36, 377-384(2015).

    [18] Jiang W, Liu Y M, Chen W D et al. Composite Yb:YAG/Cr 4+∶YAG/YAG crystal passively Q-switched lasers at 1030 nm[J]. Applied Optics, 54, 1834-1838(2015).

    [19] Wang Y, Jiang M H, Hui Y L et al. Passively Q-switched Nd∶Nb∶YAG/Cr 4+∶YAG microchip laser with low time jitter and high repetition rate[J]. Acta Optica Sinica, 38, 1014004(2018).

    [20] Lin W P, Jiang N, Zhou T J et al. 1030 nm laser amplification of Yb∶YAG ceramic planar waveguide[J]. Chinese Journal of Lasers, 46, 0501002(2019).

    [21] Gao J, Dai X J, Zhang L et al. All-solid-state continuous-wave yellow laser at 561 nm under in-band pumping[J]. Journal of the Optical Society of America B, 30, 95-98(2013). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-30-1-95

    [22] Zhu H Y, Duan Y M, Zhang G et al. Yellow-light generation of 57 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 34, 2763-2765(2009).

    [23] Zhang L, Yu Y Q, Guo Y Y et al. Diode-end-pumped composite Nd∶YVO4 yellow laser based on intracavity frequency-doubled self-Raman laser[J]. Optics Communications, 283, 3761-3763(2010).

    [24] Geng Y G, Li L, Pan X R et al. Temperature field of pulsed LD end-pumped square Yb∶YAG crystal with variable thermal-conductivity[J]. Laser & Optoelectronics Progress, 53, 081401(2016).

    [25] Dong J, Bass M, Mao Y L et al. Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 20, 1975-1979(2003).

    [26] Dong J, Deng P, Liu Y et al. Passively Q-switched Yb∶YAG laser with Cr 4+∶YAG as the saturable absorber[J]. Applied Optics, 40, 4303-4307(2001).

    [27] Bibeau C, Beach R J, Mitchell S C et al. High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb∶YAG laser[J]. IEEE Journal of Quantum Electronics, 34, 2010-2019(1998). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=720241

    [28] Jaspan M A, Welford D, Russell J A. Passively Q-switched microlaser performance in the presence of pump-induced bleaching of the saturable absorber[J]. Applied Optics, 43, 2555-2560(2004).

    [29] Koerner J, Vorholt C, Liebetrau H et al. Measurement of temperature-dependent absorption and emission spectra of Yb∶YAG, Yb∶LuAG, and Yb∶CaF2 between 20 ℃ and 200 ℃ and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 29, 2493(2012).

    [30] Dong J, Ueda K, Kaminskii A A. Laser-diode pumped efficient Yb∶LuAG microchip lasers oscillating at 1030 and 1047 nm[J]. Laser Physics Letters, 7, 726-733(2010).

    [31] Ding S, Wang M, Wang S et al. Investigation on LD end-pumped passively Q-switched c-cut Nd∶ YVO4 self-Raman laser[J]. Optics Express, 21, 13052-13061(2013).

    [32] Ding S H, Zhang X Y, Wang Q P et al. Numerical modelling of passively Q-switched intracavity Raman lasers[J]. Journal of Physics D Applied Physics, 40, 2736(2007).

    Zhao Hui, Wang Haoyu, Zhu Siqi, Yin Hao, Li Zhen, Chen Zhenqiang. 578.5 nm End-Pumped Passively Q-switched Raman Yellow Laser[J]. Laser & Optoelectronics Progress, 2021, 58(1): 114004
    Download Citation