• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111401 (2020)
Mingsi Zhang, Meiling Jiang, Ziwei Feng, Xu Ouyang, Yaoyu Cao, and Xiangping Li*
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 511443, China
  • show less
    DOI: 10.3788/LOP57.111401 Cite this Article Set citation alerts
    Mingsi Zhang, Meiling Jiang, Ziwei Feng, Xu Ouyang, Yaoyu Cao, Xiangping Li. Fundamentals and Applications of Ultrafast Laser Induced Photothermal Reshaping of Plasmonic Nanomaterials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111401 Copy Citation Text show less
    References

    [1] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters, 22, 132-134(1997).

    [2] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [3] Cao X W, Zhang L, Yu Y S et al. Application of micro-optical components fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 44, 0102004(2017).

    [4] Zhou W P, Wang S T, Yu Y C et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 44, 0102002(2017).

    [5] Wei C, Ma Y P, Han Y et al. Femtosecond laser processing of ultrahard materials[J]. Laser & Optoelectronics Progress, 56, 190003(2019).

    [6] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [7] Cao Y Y, Xie F, Zhang P D et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 44, 1133-1145, 1254(2017).

    [8] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer(2007).

    [9] Gu B Y. Surface plasmon subwave length optics: principles and novel effects[J]. Physics, 36, 280-287(2007).

    [10] Tong L M, Xu H X. Surface plasmons: mechanisms, applications and perspectives[J]. Physics, 41, 582-588(2012).

    [11] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    [12] Xu Y, Bian J, Zhang W H. Principles and processes of nanometric localized-surface-plasmonic optical sensors[J]. Laser & Optoelectronics Progress, 56, 202407(2019).

    [13] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015).

    [14] Liang J, Liu X, Zhou L. Application of plasmon photothermal effect in solar vapor generation[J]. Laser & Optoelectronics Progress, 56, 202405(2019).

    [15] Zijlstra P. Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [16] Li X P, Lan T H, Tien C H et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 3, 998(2012).

    [17] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    [18] Ouyang X, Xu Y, Xian M C et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 46, 180584(2019).

    [19] Jiang M L, Zhang M S, Li X P et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 46, 180649(2019).

    [20] Kristensen A. Yang J K W, Bozhevolnyi S I, et al. Plasmonic colour generation[J]. Nature Reviews Materials, 2, 16088(2017).

    [21] Zhu X L, Vannahme C, Højlund-Nielsen E et al. Plasmonic colour laser printing[J]. Nature Nanotechnology, 11, 325-329(2016).

    [22] Roberts A S, Novikov S M, Yang Y Q et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays[J]. ACS Nano, 13, 71-77(2019).

    [23] Zhang Y N, Shi L, Hu D J et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 4, 601-609(2019).

    [24] Kumar K, Duan H G, Hegde R S et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 7, 557-561(2012).

    [25] Hu D J, Lu Y D, Cao Y Y et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy[J]. ACS Nano, 12, 9233-9239(2018).

    [26] Feng Z W, Hu D J, Liang L L et al. Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption[J]. Advanced Optical Materials, 7, 1900610(2019).

    [27] Xue J C, Zhou Z K, Lin L M et al. Perturbative countersurveillance metaoptics with compound nanosieves[J]. Light: Science & Applications, 8, 101(2019).

    [28] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [29] Zijlstra P. Photothermal properties of gold nanorods and their application to five-dimensional optical recording[D]. Melbourne: Swinburne University of Technology(2009).

    [30] Link S, Wang Z L. El-Sayed M A. How does a gold nanorod melt?[J]. The Journal of Physical Chemistry B, 104, 7867-7870(2000).

    [31] Link S, Burda C, Nikoobakht B et al. How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study[J]. Chemical Physics Letters, 315, 12-18(1999).

    [32] Link S. El-Sayed M A. Spectroscopic determination of the melting energy of a gold nanorod[J]. The Journal of Chemical Physics, 114, 2362-2368(2001).

    [33] Zijlstra P. Chon J W M, Gu M. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods[J]. Physical Chemistry Chemical Physics, 11, 5915-5921(2009).

    [34] Taylor A B, Siddiquee A M. Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion[J]. ACS Nano, 8, 12071-12079(2014).

    [35] Inasawa S, Sugiyama M, Yamaguchi Y. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting[J]. The Journal of Physical Chemistry B, 109, 3104-3111(2005).

    [36] Leitz K H, Redlingshöfer B, Reg Y et al. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 12, 230-238(2011).

    [37] Wang X, Kuchmizhak A, Li X et al. Laser-induced translative hydrodynamic mass snapshots: noninvasive characterization and predictive modeling via mapping at nanoscale[J]. Physical Review Applied, 8, 044016(2017).

    [38] Ouyang X, Xu Y, Feng Z W et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 11, 2447-2452(2019).

    [39] Ren H, Li X, Zhang Q et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 352, 805-809(2016).

    Mingsi Zhang, Meiling Jiang, Ziwei Feng, Xu Ouyang, Yaoyu Cao, Xiangping Li. Fundamentals and Applications of Ultrafast Laser Induced Photothermal Reshaping of Plasmonic Nanomaterials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111401
    Download Citation