• Acta Optica Sinica
  • Vol. 44, Issue 4, 0400002 (2024)
Yanping Li, Yongqiang Chen, Yuqing Liu, Rui Hu, Junle Qu, and Liwei Liu*
Author Affiliations
  • College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen 518060, Guangdong , China
  • show less
    DOI: 10.3788/AOS231343 Cite this Article Set citation alerts
    Yanping Li, Yongqiang Chen, Yuqing Liu, Rui Hu, Junle Qu, Liwei Liu. Review on Multimodal Nonlinear Optical Microscopy Imaging Technology[J]. Acta Optica Sinica, 2024, 44(4): 0400002 Copy Citation Text show less
    References

    [1] Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe[J]. Optics Communications, 12, 318-322(1974).

    [2] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [3] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [4] Piston D W, Sandison D R, Webb W W. Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser-scanning microscopy[J]. Proceedings of SPIE, 1640, 379-389(1992).

    [5] Xu C, Zipfel W, Webb W W. Three-photon excited fluorescence and applications in nonlinear laser scanning microscopy[J]. Biophysical Journal, 70, WP297(1996).

    [6] Ploetz E, Laimgruber S, Berner S et al. Femtosecond stimulated Raman microscopy[J]. Applied Physics B, 87, 389-393(2007).

    [7] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [8] Gopal A A, Kazarine A, Dubach J M et al. Recent advances in nonlinear microscopy: deep insights and polarized revelations[J]. The International Journal of Biochemistry & Cell Biology, 130, 105896(2021).

    [9] Mu S Q, Dong D S, Shi K B. Label-free optical imaging technology[J]. Laser & Optoelectronics Progress, 59, 1200001(2022).

    [10] Piston D W, Kirby M S, Cheng H P et al. Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity[J]. Applied Optics, 33, 662-669(1994).

    [11] Patterson G H, Knobel S M, Arkhammar P et al. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 5203-5207(2000).

    [12] Huang S H, Heikal A A, Webb W W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein[J]. Biophysical Journal, 82, 2811-2825(2002).

    [13] Deyl Z, Macek K, Adam M et al. Studies on the chemical nature of elastin fluorescence[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure, 625, 248-254(1980).

    [14] Gusachenko I, Tran V, Houssen Y G et al. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching[J]. Biophysical Journal, 102, 2220-2229(2012).

    [15] Débarre D, Supatto W, Pena A M et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy[J]. Nature Methods, 3, 47-53(2006).

    [16] Wang H W, Le T T, Cheng J X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope[J]. Optics Communications, 281, 1813-1822(2008).

    [17] Wang H F, Fu Y, Shi R Y et al. Molecular imaging of central nervous system with multi-modal nonlinear optical microscopy[C](2008).

    [18] Wang H W, Langohr I M, Sturek M et al. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1342-1348(2009).

    [19] Ko A C T, Ridsdale A, Smith M S D et al. Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits[J]. Journal of Biomedical Optics, 15, 020501(2010).

    [20] Murugkar S, Smith B, Srivastava P et al. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source[J]. Optics Express, 18, 23796-23804(2010).

    [21] Li D, Zheng W, Zeng Y et al. In vivo and simultaneous multimodal imaging: integrated multiplex coherent anti-Stokes Raman scattering and two-photon microscopy[J]. Applied Physics Letters, 97, 223702(2010).

    [22] Li X S, Lam W J, Cao Z et al. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures[J]. Journal of Biomedical Optics, 20, 110501(2015).

    [23] Crisafi F, Kumar V, Perri A et al. Multimodal nonlinear microscope based on a compact fiber-format laser source[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 135-140(2018).

    [24] Tserevelakis G J, Psycharakis S, Resan B et al. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing third harmonic generation imaging modality as diagnostic tool[J]. Journal of Biophotonics, 5, 200-207(2012).

    [25] Mouras R, Bagnaninchi P O, Downes A R et al. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy[J]. Journal of Biomedical Optics, 17, 116011(2012).

    [26] Lin J, Teh S, Zheng W et al. Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling[J]. Biomedical Optics Express, 5, 3116-3122(2014).

    [27] Tian Y, Kong Y, Li X J et al. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 134, 147-155(2015).

    [28] Tolstik E, Osminkina L A, Akimov D et al. Linear and non-linear optical imaging of cancer cells with silicon nanoparticles[J]. International Journal of Molecular Sciences, 17, 1536(2016).

    [29] Adur J, Pelegati V B, Costa L F L et al. Recognition of serous ovarian tumors in human samples by multimodal nonlinear optical microscopy[J]. Journal of Biomedical Optics, 16, 096017(2011).

    [30] Bianchi M, Adur J, Ruff S Y et al. Mouse colorectal cancer an early detection approach using nonlinear microscopy[J]. Bio-Medical Materials and Engineering, 24, 3419-3426(2014).

    [31] Galli R, Sablinskas V, Dasevicius D et al. Non-linear optical microscopy of kidney tumours[J]. Journal of Biophotonics, 7, 23-27(2014).

    [32] Mouras R, Bagnaninchi P, Downes A et al. Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science[J]. Journal of Raman Spectroscopy, 44, 1373-1378(2013).

    [33] Bocklitz T W, Salah F S, Vogler N et al. Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool[J]. BMC Cancer, 16, 1-11(2016).

    [34] Medyukhina A, Meyer T, Schmitt M et al. Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy[J]. Journal of Biophotonics, 5, 878-888(2012).

    [35] Romeike B F M, Meyer T, Reichart R et al. Coherent anti-Stokes Raman scattering and two photon excited fluorescence for neurosurgery[J]. Clinical Neurology and Neurosurgery, 131, 42-46(2015).

    [36] Yue S H, Slipchenko M N, Cheng J X. Multimodal nonlinear optical microscopy[J]. Laser & Photonics Reviews, 5, 496-512(2011).

    [37] Suhling K, Hirvonen L M, Levitt J A et al. Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments[J]. Medical Photonics, 27, 3-40(2015).

    [38] Poudel C, Mela I, Kaminski C F. High-throughput, multi-parametric, and correlative fluorescence lifetime imaging[J]. Methods and Applications in Fluorescence, 8, 024005(2020).

    [39] Kleinman D A. Theory of second harmonic generation of light[J]. Physical Review, 128, 1761-1775(1962).

    [40] Rosen P. Generation of the third harmonic by an electromagnetic signal in a plasma[J]. The Physics of Fluids, 4, 341-345(1961).

    [41] Roth S, Freund I. Second harmonic generation in collagen[J]. The Journal of Chemical Physics, 70, 1637-1643(1979).

    [42] Campagnola P J, Millard A C, Terasaki M et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues[J]. Biophysical Journal, 82, 493-508(2002).

    [43] Perrenoud-Rinuy J, Brevet P F, Girault H H. Second harmonic generation study of myoglobin and hemoglobin and their protoporphyrin IX chromophore at the water/1, 2-dichloroethane interface[J]. Physical Chemistry Chemical Physics, 4, 4774-4781(2002).

    [44] Sun Y, You S, Du X et al. Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy[J]. Quantitative Imaging in Medicine and Surgery, 10, 2177-2190(2020).

    [45] Farrar M J, Wise F W, Fetcho J R et al. In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy[J]. Biophysical Journal, 100, 1362-1371(2011).

    [46] Lin X M, Li X H, Zhang Y B et al. Third harmonic generation on silicon surface induced by femtosecond laser[J]. Optics & Laser Technology, 111, 255-261(2019).

    [47] Genthial R, Beaurepaire E, Schanne-Klein M C et al. Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy[J]. Scientific Reports, 2017, 3419.

    [48] Wei L, Yu Y, Shen Y H et al. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 11226-11231(2013).

    [49] Shen Y H, Xu F, Wei L et al. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering[J]. Angewandte Chemie International Edition, 53, 5596-5599(2014).

    [50] Hong S L, Chen T, Zhu Y T et al. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules[J]. Angewandte Chemie International Edition, 53, 5827-5831(2014).

    [51] Wei L, Hu F H, Shen Y H et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering[J]. Nature Methods, 11, 410-412(2014).

    [52] Hu F H, Zeng C, Long R et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nature Methods, 15, 194-200(2018).

    [53] Barad Y, Eisenberg H, Horowitz M et al. Nonlinear scanning laser microscopy by third harmonic generation[J]. Applied Physics Letters, 70, 922-924(1997).

    [54] van Huizen L M G, Radonic T, van Mourik F et al. Compact portable multiphoton microscopy reveals histopathological hallmarks of unprocessed lung tumor tissue in real time[J]. Translational Biophotonics, 2, e202000009(2020).

    [55] Mahou P, Olivier N, Labroille G et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos[J]. Biomedical Optics Express, 2, 2837-2849(2011).

    [56] Aptel F, Olivier N, Deniset-Besseau A et al. Multimodal nonlinear imaging of the human cornea[J]. Investigative Opthalmology & Visual Science, 51, 2459-2465(2010).

    [57] Barton J K, Amirsolaimani B, Rice P et al. Three-photon imaging of ovarian cancer[J]. Proceedings of SPIE, 9689, 96893P(2016).

    [58] Mouras R, Rischitor G, Downes A et al. Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging[J]. Journal of Raman Spectroscopy, 41, 848-852(2010).

    [59] Chung H Y, Greinert R, Glatzel M et al. Label-free multiphoton microscopy in human tissue enabled by an Er∶fiber-laser based tunable source[C](2019).

    [60] Buurman E P, Sanders R, Draaijer A et al. Fluorescence lifetime imaging using a confocal laser scanning microscope[J]. Scanning, 14, 155-159(1992).

    [61] Becker W. Fluorescence lifetime imaging: techniques and applications[J]. Journal of Microscopy, 247, 119-136(2012).

    [62] Schlachter S, Elder A D, Esposito A et al. MhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy[J]. Optics Express, 17, 1557-1570(2009).

    [63] Chen H T, Gratton E. A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy[J]. Microscopy Research and Technique, 76, 282-289(2013).

    [64] Shen B L, Yan J S, Wang S Q et al. Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system[J]. Theranostics, 10, 1849-1860(2020).

    [65] Wang S Q, Li Y P, Zhao Y H et al. Investigating tunneling nanotubes in ovarian cancer based on two-photon excitation FLIM-FRET[J]. Biomedical Optics Express, 12, 1962-1973(2021).

    [66] Lin F R, Zhang C S, Li Y P et al. Human serum albumin gradient in serous ovarian cancer cryosections measured by fluorescence lifetime[J]. Biomedical Optics Express, 12, 1195-1204(2021).

    [67] Yan J S, Zhao Y H, Lin F R et al. Monitoring the extracellular matrix remodeling of high-grade serous ovarian cancer with nonlinear optical microscopy[J]. Journal of Biophotonics, 14, e202000498(2021).

    [68] Li Y P, Shen B L, Zou G J et al. Fast denoising and lossless spectrum extraction in stimulated Raman scattering microscopy[J]. Journal of Biophotonics, 14, e202100080(2021).

    [69] Mouras R, Downes A, Rischitor G et al. A multimodal multiphoton microscope for biological imaging[J]. Proceedings of SPIE, 7569, 756933(2010).

    [70] Svedberg F, Brackmann C, Hellerer T et al. Nonlinear microscopy with fiber laser continuum excitation[J]. Journal of Biomedical Optics, 15, 026026(2010).

    [71] Cheng J X, Jia Y K, Zheng G F et al. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology[J]. Biophysical Journal, 83, 502-509(2002).

    [72] Chen H T, Wang H F, Slipchenko M N et al. A multimodal platform for nonlinear optical microscopy and microspectroscopy[J]. Optics Express, 17, 1282-1290(2009).

    [73] Pegoraro A F, Slepkov A D, Ridsdale A et al. Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy[J]. Applied Optics, 49, F10-F17(2010).

    [74] Fu Y, Wang H F, Shi R Y et al. Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues[J]. Biophysical Journal, 92, 3251-3259(2007).

    [75] Langbein W, Rocha-Mendoza I, Borri P. Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing[J]. Applied Physics Letters, 95, 081109(2009).

    [76] Hellerer T, Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Applied Physics Letters, 85, 25-27(2004).

    [77] Lu F K, Zheng W, Lin J et al. Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser[J]. Applied Physics Letters, 96, 133701(2010).

    [78] Cheng J X, Volkmer A, Xie X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 19, 1363-1375(2002).

    [79] Volkmer A, Cheng J X, Sunney Xie X. Vibrational imaging with high sensitivity via epidetected coherent anti-stokes Raman scattering microscopy[J]. Physical Review Letters, 87, 023901(2001).

    [80] Moreaux L, Sandre O, Charpak S et al. Coherent scattering in multi-harmonic light microscopy[J]. Biophysical Journal, 80, 1568-1574(2001).

    [81] Huff T B, Shi Y Z, Fu Y et al. Multimodal nonlinear optical microscopy and applications to central nervous system imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 4-9(2008).

    [82] Tu H H, Liu Y, Turchinovich D et al. Stain-free histopathology by programmable supercontinuum pulses[J]. Nature Photonics, 10, 534-540(2016).

    [83] You S X, Tu H H, Chaney E J et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy[J]. Nature Communications, 9, 2125(2018).

    [84] Sowa M G, Mostaco-Guidolin L B, Smith M S D et al. Nonlinear optical measurements of the artery wall: parameters related to the progression of atherosclerosis[J]. Measurement Science Review, 9, 93-94(2009).

    [85] Meyer T, Baumgartl M, Gottschall T et al. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics[J]. Analyst, 138, 4048-4057(2013).

    [86] Meyer T, Chemnitz M, Baumgartl M et al. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics[J]. Analytical Chemistry, 85, 6703-6715(2013).

    [87] Lee E S, Park J H, Lee S W et al. Lipid crystals mechanically stimulate adjacent extracellular matrix in advanced atherosclerotic plaques[J]. Atherosclerosis, 237, 769-776(2014).

    [88] You S, Chaney E J, Tu H et al. Label-free deep profiling of the tumor microenvironment[J]. Cancer Research, 81, 2534-2544(2021).

    [89] Liu Y A, Tu H H, You S X et al. Label-free molecular profiling for identification of biomarkers in carcinogenesis using multimodal multiphoton imaging[J]. Quantitative Imaging in Medicine and Surgery, 9, 742(2019).

    [90] Lin J, Lu F K, Zheng W et al. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique[J]. Journal of Biomedical Optics, 16, 116024(2011).

    [91] Meyer T, Guntinas-Lichius O, von Eggeling F et al. Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: toward intraoperative imaging[J]. Head & Neck, 35, E280-E287(2013).

    [92] Heuke S, Vogler N, Meyer T et al. Multimodal mapping of human skin[J]. British Journal of Dermatology, 169, 794-803(2013).

    [93] Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging based on stimulated Raman scattering microscopy[J]. New Journal of Physics, 11, 033026(2009).

    [94] Slipchenko M N, Chen H T, Ely D R et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy[J]. Analyst, 135, 2613-2619(2010).

    [95] Zou F, Zhang L L, Zou X et al. Differential characterization of lumbar spine associated tissue histology with nonlinear optical microscopy[J]. Biomedical Optics Express, 13, 474-484(2021).

    [96] Zhang B, Xu H, Chen J et al. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering[J]. Theranostics, 11, 3074-3088(2021).

    [97] He S C, Ye C, Sun Q Q et al. Label-free nonlinear optical imaging of mouse retina[J]. Biomedical Optics Express, 6, 1055-1066(2015).

    [98] Li R, Wang X X, Zhou Y et al. Advances in nonlinear optical microscopy for biophotonics[J]. Journal of Nanophotonics, 12, 033007(2018).

    [99] Janghyuk L, Rachel H, Nuccio E E et al. Label-free multiphoton imaging of microbes in root, mineral, and soil matrices with time-gated coherent Raman and fluorescence lifetime imaging[J]. Environmental Science & Technology, 56, 1994-2008(2022).

    [100] Chrabaszcz K, Meyer T, Bae H et al. Comparison of standard and HD FT-IR with multimodal CARS/TPEF/SHG/FLIMS imaging in the detection of the early stage of pulmonary metastasis of murine breast cancer[J]. The Analyst, 145, 4982-4990(2020).

    [101] Li Y P, Shen B L, Zou G J et al. Super-multiplex nonlinear optical imaging unscrambles the statistical complexity of cancer subtypes and tumor microenvironment[J]. Advanced Science, 9, e2104379(2022).

    [102] Li Y P, Shen B L, Lu Y et al. Multidimensional quantitative characterization of the tumor microenvironment by multicontrast nonlinear microscopy[J]. Biomedical Optics Express, 13, 5517-5532(2022).

    [103] Sacconi L, Ferrantini C, Lotti J et al. Action potential propagation in transverse-axial tubular system is impaired in heart failure[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 5815-5819(2012).

    [104] Duemani Reddy G, Kelleher K, Fink R et al. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity[J]. Nature Neuroscience, 11, 713-720(2008).

    [105] Lee S, Vinegoni C, Feruglio P F et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution[J]. Nature Communications, 3, 1054(2012).

    [106] Bélanger E, Bégin S, Laffray S et al. Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams[J]. Optics Express, 17, 18419-18432(2009).

    [107] Huff T B, Shi Y Z, Sun W J et al. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation[J]. PLoS One, 6, e17176(2011).

    [108] Tai D C S, Tan N, Xu S Y et al. Fibro-C-Index: comprehensive, morphology-based quantification of liver fibrosis using second harmonic generation and two-photon microscopy[J]. Journal of Biomedical Optics, 14, 044013(2009).

    [109] You S X, Barkalifa R, Chaney E J et al. Label-free visualization and characterization of extracellular vesicles in breast cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 24012-24018(2019).

    [110] So P T C, Yew E Y S, Rowlands C. High-throughput nonlinear optical microscopy[J]. Biophysical Journal, 105, 2641-2654(2013).

    [111] König K, So P T C, Mantulin W W et al. Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes[J]. Optics Letters, 22, 135-136(1997).

    [112] Kim K H, Buehler C, So P T C. High-speed, two-photon scanning microscope[J]. Applied Optics, 38, 6004-6009(1999).

    [113] Iyer V, Hoogland T M, Saggau P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy[J]. Journal of Neurophysiology, 95, 535-545(2006).

    [114] Kirkby P A, Srinivas Nadella K M S, Silver R A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy[J]. Optics Express, 18, 13721-13745(2010).

    [115] Evans C L, Potma E O, Puoris'haag M et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 16807-16812(2005).

    [116] Saar B G, Freudiger C W, Reichman J et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 330, 1368-1370(2010).

    [117] Buist A H, Müller M, Squier J et al. Real time two-photon absorption microscopy using multi point excitation[J]. Journal of Microscopy, 192, 217-226(1998).

    [118] Kim K H, Buehler C, Bahlmann K et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes[J]. Optics Express, 15, 11658-11678(2007).

    [119] Nielsen T, Fricke M, Hellweg D et al. High efficiency beam splitter for multifocal multiphoton microscopy[J]. Journal of Microscopy, 201, 368-376(2001).

    [120] Sacconi L, Froner E, Antolini R et al. Multiphoton multifocal microscopy exploiting a diffractive optical element[J]. Optics Letters, 28, 1918-1920(2003).

    [121] Choi H, Tzeranis D S, Cha J W et al. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation[J]. Optics Express, 20, 26219-26235(2012).

    [122] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009).

    [123] Premadasa U I, Bible A N, Morrell-Falvey J L et al. Spatially co-registered wide-field nonlinear optical imaging of living and complex biosystems in a total internal reflection geometry[J]. The Analyst, 146, 3062-3072(2021).

    [124] Liu Z, Luo Z W, Wang Z Y et al. Super-resolution fluorescence microscopy image reconstruction algorithm based on structured illumination[J]. Chinese Journal of Lasers, 48, 0307001(2021).

    [125] Ding J B, Takasaki K T, Sabatini B L. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy[J]. Neuron, 63, 429-437(2009).

    [126] Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 143, 1047-1058(2010).

    [127] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. The Journal of Cell Biology, 190, 165-175(2010).

    [128] Bethge P, Chéreau R, Avignone E et al. Two-photon excitation STED microscopy in two colors in acute brain slices[J]. Biophysical Journal, 104, 778-785(2013).

    [129] Isobe K, Takeda T, Mochizuki K et al. Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination[J]. Biomedical Optics Express, 4, 2396-2410(2013).

    [130] Upputuri P K, Wu Z, Gong L et al. Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets[J]. Optics Express, 22, 12890-12899(2014).

    [131] Lombardini A, Mytskaniuk V, Sivankutty S et al. High-resolution multimodal flexible coherent Raman endoscope[J]. Light: Science & Applications, 7, 10(2018).

    [132] Gong L, Wang H F. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study[J]. Physical Review A, 90, 013818(2014).

    [133] Gong L, Wang H F. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy[J]. Physical Review A, 92, 023828(2015).

    [134] Kim D, Choi D S, Kwon J et al. Selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering[J]. The Journal of Physical Chemistry Letters, 8, 6118-6123(2017).

    [135] Rao B J, Cho M. Three-beam double stimulated Raman scatterings: cascading configuration[J]. The Journal of Chemical Physics, 148, 114201(2018).

    [136] Silva W R, Graefe C T, Frontiera R R. Toward label-free super-resolution microscopy[J]. ACS Photonics, 3, 79-86(2016).

    [137] Ao J P, Fang X F, Miao X C et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes[J]. Nature Communications, 12, 3089(2021).

    [138] Shou J W, Ozeki Y. Photoswitchable stimulated Raman scattering spectroscopy and microscopy[J]. Optics Letters, 46, 2176-2179(2021).

    [139] Shou J W, Komazawa A, Wachi Y et al. Super-resolution vibrational imaging based on photoswitchable Raman probe[J]. Science Advances, 9, eade9118(2023).

    [140] Jang H, Li Y J, Fung A A et al. Super-resolution SRS microscopy with A-PoD[J]. Nature Methods, 20, 448-458(2023).

    [141] Shen B L, Liu S W, Li Y P et al. Deep learning autofluorescence-harmonic microscopy[J]. Light: Science & Applications, 11, 76(2022).

    [142] Cheng J X, Book L D, Xie X S. Polarization coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 26, 1341-1343(2001).

    [143] Ganikhanov F, Evans C L, Saar B G et al. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy[J]. Optics Letters, 31, 1872-1874(2006).

    [144] Marks D L, Boppart S A. Nonlinear interferometric vibrational imaging[J]. Physical Review Letters, 92, 123905(2004).

    [145] Liu Y X, Lee Y J, Cicerone M T. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform[J]. Optics Letters, 34, 1363-1365(2009).

    [146] Freudiger C W, Yang W L, Holtom G R et al. Stimulated Raman scattering microscopy with a robust fibre laser source[J]. Nature Photonics, 8, 153-159(2014).

    [147] Zhang D L, Slipchenko M N, Leaird D E et al. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper[J]. Optics Express, 21, 13864-13874(2013).

    [148] Andreana M, Houle M A, Moffatt D J et al. Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy[J]. Optics Express, 23, 28119-28131(2015).

    [149] Mehta A D, Jung J C, Flusberg B A et al. Fiber optic in vivo imaging in the mammalian nervous system[J]. Current Opinion in Neurobiology, 14, 617-628(2004).

    [150] Flusberg B A, Cocker E D, Piyawattanametha W et al. Fiber-optic fluorescence imaging[J]. Nature Methods, 2, 941-950(2005).

    [151] Gu M, Sheppard C J R, Gan X. Image formation in a fiber-optical confocal scanning microscope[J]. Journal of the Optical Society of America A, 8, 1755-1761(1991).

    [152] Rouse A R, Kano A, Udovich J A et al. Design and demonstration of a miniature catheter for a confocal microendoscope[J]. Applied Optics, 43, 5763-5771(2004).

    [153] Oh G, Chung E, Yun S H. Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging[J]. Optical Fiber Technology, 19, 760-771(2013).

    [154] Singh S, Bradley L T. Three-photon absorption in napthalene crystals by laser excitation[J]. Physical Review Letters, 12, 612-614(1964).

    [155] Bird D, Gu M. Fibre-optic two-photon scanning fluorescence microscopy[J]. Journal of Microscopy, 208, 35-48(2002).

    [156] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [157] Knight J C. Photonic crystal fibres[J]. Nature, 424, 847-851(2003).

    [158] Ouzounov D G, Moll K D, Foster M A et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers[J]. Optics Letters, 27, 1513-1515(2002).

    [159] Göbel W, Nimmerjahn A, Helmchen F. Distortion-free delivery of nanojoule femtosecond pulses from a Ti∶sapphire laser through a hollow-core photonic crystal fiber[J]. Optics Letters, 29, 1285-1287(2004).

    [160] Liang W X, Hall G, Messerschmidt B et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light: Science & Applications, 6, e17082(2017).

    [161] Guan H H, Liang W X, Li A et al. Multicolor fiber-optic two-photon endomicroscopy for brain imaging[J]. Optics Letters, 46, 1093-1096(2021).

    [162] Rivera D R, Brown C M, Ouzounov D G et al. Multifocal multiphoton endoscope[J]. Optics Letters, 37, 1349-1351(2012).

    [163] Ye J Y, Myaing M T, Thomas T P et al. Development of a double-clad photonic-crystal-fiber-based scanning microscope[J]. Proceedings of SPIE, 5700, 23-27(2005).

    [164] Fu L, Gan X S, Gu M. Nonlinear optical microscopy based on double-clad photonic crystal fibers[J]. Optics Express, 13, 5528-5534(2005).

    [165] Myaing M T, Ye J Y, Norris T B et al. Enhanced two-photon biosensing with double-clad photonic crystal fibers[J]. Optics Letters, 28, 1224-1226(2003).

    [166] Brustlein S, Berto P, Hostein R et al. Double-clad hollow core photonic crystal fiber for coherent Raman endoscope[J]. Optics Express, 19, 12562-12568(2011).

    [167] Pshenay-Severin E, Bae H, Reichwald K et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept[J]. Light: Science & Applications, 10, 207(2021).

    [168] Ducourthial G, Leclerc P, Mansuryan T et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal[J]. Scientific Reports, 5, 18303(2015).

    [169] Göbel W, Kerr J N D, Nimmerjahn A et al. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective[J]. Optics Letters, 29, 2521-2523(2004).

    [170] Lukic A, Dochow S, Bae H et al. Endoscopic fiber probe for nonlinear spectroscopic imaging[J]. Optica, 4, 496-501(2017).

    [171] Sung K B, Liang C, Descour M et al. Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved[J]. Journal of Microscopy, 207, 137-145(2002).

    [172] Sparks H, Kondo H, Hooper S et al. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy[J]. Nature Communications, 9, 2662(2018).

    [173] Helmchen F, Fee M S, Tank D W et al. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals[J]. Neuron, 31, 903-912(2001).

    [174] Myaing M T, MacDonald D J, Li X D. Fiber-optic scanning two-photon fluorescence endoscope[J]. Optics Letters, 31, 1076-1078(2006).

    [175] Kim D, Kim K H, Yazdanfar S et al. Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy[J]. Proceedings of SPIE, 5700, 14-22(2005).

    [176] Bird D, Gu M. Two-photon fluorescence endoscopy with a micro-optic scanning head[J]. Optics Letters, 28, 1552-1554(2003).

    [177] Herz P R, Chen Y, Aguirre A D et al. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 29, 2261-2263(2004).

    [178] Fu L, Jain A, Xie H K et al. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror[J]. Optics Express, 14, 1027-1032(2006).

    [179] Piyawattanametha W, Barretto R P J, Ko T H et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror[J]. Optics Letters, 31, 2018-2020(2006).

    [180] Zong W J, Wu R L, Li M L et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 14, 713-719(2017).

    [181] Fu L, Gu M. Fibre-optic nonlinear optical microscopy and endoscopy[J]. Journal of Microscopy, 226, 195-206(2007).

    [182] Jung J C, Mehta A D, Aksay E et al. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy[J]. Journal of Neurophysiology, 92, 3121-3133(2004).

    [183] Murayama M, Larkum M E. In vivo dendritic calcium imaging with a fiberoptic periscope system[J]. Nature Protocols, 4, 1551-1559(2009).

    [184] Cicchi R, Kapsokalyvas D, De Giorgi V et al. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy[J]. Journal of Biophotonics, 3, 34-43(2010).

    [185] Adur J, Carvalho H F, Cesar C L et al. Nonlinear optical microscopy signal processing strategies in cancer[J]. Cancer Informatics, 13, 67-76(2014).

    [186] Cicchi R, Massi D, Sestini S et al. Multidimensional non-linear laser imaging of Basal Cell Carcinoma[J]. Optics Express, 15, 10135-10148(2007).

    [187] Lin S J, Jee S H, Kuo C J et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging[J]. Optics Letters, 31, 2756-2758(2006).

    [188] Provenzano P P, Inman D R, Eliceiri K W et al. Collagen density promotes mammary tumor initiation and progression[J]. BMC Medicine, 6, 1-15(2008).

    [189] Matteini P, Ratto F, Rossi F et al. Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging[J]. Optics Express, 17, 4868-4878(2009).

    [190] Sivaguru M, Durgam S, Ambekar R et al. Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging[J]. Optics Express, 18, 24983-24993(2010).

    [191] Walker R F, Jackway P T, Longstaff D. Genetic algorithm optimization of adaptive multi-scale GLCM features[J]. International Journal of Pattern Recognition and Artificial Intelligence, 17, 17-39(2003).

    [192] Watson J M, Rice P F, Marion S L et al. Analysis of second-harmonic-generation microscopy in a mouse model of ovarian carcinoma[J]. Journal of Biomedical Optics, 17, 076002(2012).

    [193] Zhuo S M, Chen J X, Wu G Z et al. Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy[J]. Applied Physics Letters, 96, 213704(2010).

    [194] Miljković M, Chernenko T, Romeo M J et al. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets[J]. Analyst, 135, 2002-2013(2010).

    [195] Ozeki Y, Umemura W, Otsuka Y et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J]. Nature Photonics, 6, 845-851(2012).

    [196] Zhang D L, Wang P, Slipchenko M N et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis[J]. Analytical Chemistry, 85, 98-106(2013).

    [197] Ranjit S, Malacrida L, Jameson D M et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach[J]. Nature Protocols, 13, 1979-2004(2018).

    [198] Clayton A H A, Hanley Q S, Verveer P J. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data[J]. Journal of Microscopy, 213, 1-5(2004).

    [199] Monteleone A, Schary W, Wenzel F et al. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)‑generated data[J]. Chemico-Biological Interactions, 342, 109466(2021).

    [200] Zhang Y D, Hato T, Dagher P C et al. Automatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasors[J]. Optics Letters, 44, 3928-3931(2019).

    [201] Digman M A, Caiolfa V R, Zamai M et al. The phasor approach to fluorescence lifetime imaging analysis[J]. Biophysical Journal, 94, L14-L16(2008).

    [202] Lee S H, Hong S H, Park S H et al. Observation of cell division in a fertilized egg of a zebrafish by using a multimodal nonlinear optical microscope[J]. Journal of the Korean Physical Society, 75, 485-489(2019).

    [203] Xu X Q, Wang G X, Peng D Q et al. Differentiation of early gastric cancer infiltration depths using nonlinear optical microscopy[J]. Journal of Physics D: Applied Physics, 54, 394001(2021).

    [204] Zhang L L, Zou X, Huang J et al. Label-free histology and evaluation of human pancreatic cancer with coherent nonlinear optical microscopy[J]. Analytical Chemistry, 93, 15550-15558(2021).

    [205] Li L H, Chen Z F, Wang X F et al. Monitoring neoadjuvant therapy responses in rectal cancer using multimodal nonlinear optical microscopy[J]. Oncotarget, 8, 107323-107333(2017).

    [206] Teh S K, Zheng W, Li S X et al. Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia[J]. Journal of Biomedical Optics, 18, 036001(2013).

    [207] Pallen S, Shetty Y, Das S et al. Advances in nonlinear optical microscopy techniques for in vivo and in vitro neuroimaging[J]. Biophysical Reviews, 13, 1199-1217(2021).

    [208] Zhuo G Y, Spandana K U, Sindhoora K M et al. Label-free multimodal nonlinear optical microscopy for biomedical applications[J]. Journal of Applied Physics, 129, 214901(2021).

    [209] Jose R J, Hyuk L J, Aneesh A et al. Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy[J]. BMJ Open Diabetes Research & Care, 8, e000974(2020).

    [210] Hou J, Williams J N, Botvinick E et al. Visualization of breast cancer metabolism using multimodal nonlinear optical microscopy of cellular lipids and redox state[J]. Cancer Research, 78, 2503-2512(2018).

    [211] Yang L X, Park J, Marjanovic M et al. Intraoperative label-free multimodal nonlinear optical imaging for point-of-procedure cancer diagnostics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6801412(2021).

    [212] Zhang Y D, Guldner I H, Nichols E L et al. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains[J]. Optica, 8, 885-897(2021).

    [213] Raspe M, Kedziora K M, van den Broek B et al. siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data[J]. Nature Methods, 13, 501-504(2016).

    [214] He R Y, Xu Y K, Zhang L L et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 4, 44-47(2016).

    [215] Kong L J, Ji M B, Holtom G R et al. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator[J]. Optics Letters, 38, 145-147(2013).

    [216] Zhao Z W, Shen B L, Li Y P et al. Deep learning-based high-speed, large-field, and high-resolution multiphoton imaging[J]. Biomedical Optics Express, 14, 65-80(2023).

    [217] Casacio C A, Madsen L S, Terrasson A et al. Quantum-enhanced nonlinear microscopy[J]. Nature, 594, 201-206(2021).

    [218] Qiu L D, Kang D Y, Wang C et al. Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity[J]. Nature Communications, 13, 4250(2022).

    [219] Hollon T C, Pandian B, Adapa A R et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature Medicine, 26, 52-58(2020).

    [220] Huttunen M J, Hristu R, Dumitru A et al. Multiphoton microscopy of the dermoepidermal junction and automated identification of dysplastic tissues with deep learning[J]. Biomedical Optics Express, 11, 186-199(2019).

    [221] Wang G X, Sun Y, Chen Y T et al. Rapid identification of human ovarian cancer in second harmonic generation images using radiomics feature analyses and tree-based pipeline optimization tool[J]. Journal of Biophotonics, 13, e202000050(2020).

    [222] Zhang L L, Wu Y Z, Zheng B et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 9, 2541-2554(2019).

    [223] Li H Y, Qu L Y, Hua Z J et al. Deep learning based fluorescence microscopy imaging technologies and applications[J]. Laser & Optoelectronics Progress, 58, 1811007(2021).

    Yanping Li, Yongqiang Chen, Yuqing Liu, Rui Hu, Junle Qu, Liwei Liu. Review on Multimodal Nonlinear Optical Microscopy Imaging Technology[J]. Acta Optica Sinica, 2024, 44(4): 0400002
    Download Citation